The

VRR

User’s Manual




Copyright (© 2005 The VRR Team vrr@ucw.cz


mailto:vrr@ucw.cz

Table of Contents

1

2

Introduction .......... ... .. 1
Installation Instructions ................................ 3
2.1 Imstallation Requirements ... ....... ... 3
2.2 Compilation . . ... 4
2.3 Imstallation . ... ... 4
Tutorial ........ . e 5
3.1 The first simple graphic objects......... ... .. 5
3.1.1 Creating graphic objects —overview ................ oo, 5
3.1.2 Creating graphic objects — the cat example ............. ... .. ... .. ....... 7
3.2 Selection. ... ..o 10
3.3 Basic actions. .. ... 10
3.4 Transformations of graphic objects. ... ... ... ... 11
3.4.1 Transforming using the Select/Transform tool.............................. 11
3.4.2 Santiago’s transform tool...... ... ... .. ... 13
3.4.3 Predefined basic transformations........... ... ... 14
3.5 Modifying the properties. ... .. ... 14
3.5.1 Modifying the properties — Introduction ................ ... ... ... ......... 14
3.5.2 Modifying the properties — The car example ............................... 15
3.6 Snap — introducing geometric dependencies. .......... ... ... i 18
3.6.1 What is snap? What is it good for? ........ ... . ... . 18
3.6.2  Fifl .. 19
3.6.3 Anchor rehang. ........ ... 19
3.7 Creating texts . ..ot 20
371 Texts — OVEIVIEW . ..ottt e e e e e e e e e e 20
3.7.2 Texts — Examples. ... ..o 21
3.7.3 TeX tutorials . . ... ..o 23
3.7.4 Texts and Snap — the Bézier subdivision example........................... 23
3.8 Groups and paths . ... 26
3.9 Controlling VRR from the command line................... ... . .............. 26
The Anatomy of the Universe.......................... 27
4.1 Anchors and hangers . ........ ... 27
4.2 The group tree of a page . ... 29
421 GIOUPS . - o e ettt e et e e e e e 29
4.2.2  Paths ..o 29
4.3 Documents and Pages. . ... ...t 29
The Anatomy of the Graphical User Interface........... 31
5.1 WINAOWS . . oot 31
5.1.1 The Main Window . . ... .. e 31
5.1.2 The VIeW . ..o 31
5.1.3 Universe Browser .. ... ... 32
5.1.4 The Undo History Window ............. i 33
5.1.50 The Property Window ........ ... 34

5.1.6 The Text EAItor .. ... 35



ii

The VRR User’s Manual

5.1.7 Global Settings ... ... 35
5.1.8 The Unit Manager . ....... ..o 37
5.1.9 The Plugin Manager . ....... ... 37
5.1.10 The Scheme console. . ... ... 38
5.1.11 The Clipboard . ... ... 39
5.2 The context . .. ... 39
5.3 The mechanism of creating new graphic objects.............. . ... ... ... .... 39
5.3.1 The Select/Transform mode . .......... ... 40
5.3.2 The Santiago’s transform mode ............ ... . 40
5.3.3 Anchor Rehang mode ........ .. .. 41
5.3.4 GO Creating Modes. . ... 41
5.3.4.1 Points and decorations. . ...t 41
5.3.4.2 BéZIEr CUTVES. . ..ottt e e e e e e 42
5.3.4.3 Circular arcs ... ...t 42
5.3.4.4 EIPEIC ArCS. ..ottt 43
B340 LeXtS . oottt 44

5.3.5 Snap Settings . . o oot 45

6 Scheme............iiiiiiii ittt 46
6.1 VRR Scheme data types . .......oo i 46
6.2 VRR Scheme functions ........... .. 46
6.3 Functions for VRR types. ... ..o 47
6.4 Creation of Objects .. ... ... 47
6.5 The namespace hierarchy and functions ............. ... ... ... .. ... ... ... ..... 51
6.6 The group hierarchy and functions........ ... ... .. ... . 52
6.7 The dependency hierarchy and functions ............. ... . ... .. ... .. ... .. 54
6.8 Anchor-hanger binding functions ............ ... . ... . . 55
6.9 Inter-hierarchy movement ........ ... . ... 56
6.10 Z-order fUncCtions . .. ... 56
6.11  Selection functions .......... ... 57
6.12 Transformational functions......... ... .. ... . . 58
6.13 Windows and VIEWS . . ...t 59
6.14 Propertial functions .. ... ... ... 61
6.15 Transactional functions ............ ... 62
6.16 Miscellaneous functions . ............. 63
T FAQ . e et e e 65



Chapter 1: Introduction 1

1 Introduction

VRR (a Vector-based gRaphic editoR) is an application designed especially for creating illustra-
tions of mathematical articles.

%«717, 6, 15 4 B3 [z [ a9, [8~[7, T6, [5 [4, [3 T2 [1 Jo, . T2 B, & 5 T6, J7, |~

T (define (kochline pl p2 dpt spoon)

Ll

|.r||
L

el

R P e

el

o]0 Alw[=[#[s FIO][¥]o r B

1]
L
21
1 ) | X
= 31 (define (koch x1 y1 x! \;’ x3 v3 dpt spoon) ’
Y (ko (1M recig x1 yv1) (make- 1'”'“:?"1%\3"‘“” spoon)
- 4 (kocMif lftl 10 ll (2 v2) (make-rectan b ;\Qi'lq”imhpmllu
o :1  (koch luR (nl 3 v3) (make-rectangular xl1 le'd%“"fﬂm\’
100
= 010 et
o http://NVERUCW.CZ ) g VUW“
;| http//v 020 .2 e e G Ly o
1 (make-point (me-new spoon-x spoon- \)H‘i‘?
FE =
4l | sl
| [Select 7 ¥ 100.0%, 0.0°

Picture 1: The logo.

VRR has a simple but powerful operation set: creating, manipulating and transforming basic
graphic primitives, which are points, segments, rational Bézier curves, elliptic arcs etc. All
objects can be determined not only by absolute coordinates, but also by geometric dependencies
on other objects — intersections, significant points, other curves etc. When an object is changed,
the dependent objects are recalculated automatically. This enables you to modify the image
easily without breaking the lines visually tied together.

VRR has a sophisticated system for working with text. In addition to common text objects, it
allows you to create text objects typeset by TEX and make them part of your image. You can
create almost anything from a short math expression to several paragraphs of a text.

The editor is able to import from and export to files in common data formats (export to PDF,
PS, EPS and SVG, import from IPE5 and SVG).

VRR is a freely available open source program, which runs on Linux and uses a graphical user
interface based on the X Window System and GTK. The authors suppose that the time spent
by a user exploring VRR’s interface will bring him much joy later when he is able to use all of
its powerful advanced features.

The editor can be also easily extended by a plugin or by a program written in its built-in
scripting language, Scheme.



2 The VRR User’s Manual

If you have any suggestions or bug reports, you can contact the VRR Team on vrrQucw.cz. For
new release versions of VRR, documentation and many related articles, see the VRR developers’
page — http://vrr.ucw.cz/.


mailto:vrr@ucw.cz
http://vrr.ucw.cz/

Chapter 2: Installation Instructions 3

2 Installation Instructions

2.1 Installation Requirements

Hardware requirements

VRR has no specific hardware requirements except for

e a computer able to run a decent *NIX operating system (Linux presumably) and X Window
environment (not required for the commandline-only interface),

e graphical display (not required for the commandline-only interface),

e a mouse with at least two buttons, three buttons are even better (again, not for the
commandline-only interface).

To prevent difficulties with long reaction times while running VRR, it is also recommended to
have a system fast enough to perform sophisticated geometric computations.

Software requirements

VRR was developed under Linux operating system, but if all prerequisities are fulfilled, it can
run under any of *NIX-like systems.

Before the installation of VRR, make sure your system fulfils these prerequisities:
e GTK+ 2.6.0 or higher
e Guile library 1.6 or higher
e LibKPathSea
e FontConfig 2.3.1 or higher
e pdfTEX
e ZLIB
e LibXML 2.0 or higher

This is enough only when installing VRR from a binary package. To compile VRR on your own
you need also these:

e GNU make

e gcc 3.0 or higher
e GNU awk

e Perl

In most cases you will need the development packages (1ibXXX-dev) of the previous libraries to
compile VRR.

The program is also able to use the libpaper library for paper sizes management and Cairo
library for advanced rendering, but they are not mandatory for successful compilation.

Optional: The documentation books are distributed along with VRR. No compilation of the
documentation is needed; however, if for any reason you want to build the documentation
yourself, you will need the GNU Texinfo (version at least 4.7) and various utilities, like texi2html.
For instructions how to build the documentation, see the Programmer’s Manual.



4 The VRR User’s Manual

2.2 Compilation

There are two ways to install VRR. Either you can download the source files and compile VRR,
or you can download and install the x86 binary as a Debian package. We will now describe the
compilation.

Download the gzip or bzip2 archive from the website http://vrr.ucw.cz/. Unpack the archive
and change directory to its root directory. Then type make config to configure your instal-
lation automatically or run build/configure to configure your installation manually. The
build/configure script accepts many options as other configure scripts do; for help about
these options, run build/configure --help.

If you have the Cairo library installed and you want to use it instead of GDK for image rendering,
then you can enable it manually during configuration.

When the configuration has finished, type make final to compile the program.

Optional: If you do not want to install the program, you can still compile and run it. Instead of
make final, run make local only to compile the program. To run the program, run bin/vrr
or bin/guile-vrr in the ‘run’ directory.

2.3 Installation

First make sure you have the write permission to the destination directories. In most cases you
will need to login as root. Then type make install. The two main binaries: the GUI-version
vrr and non-GUI Scheme console guile-vrr will be installed. The other installed binaries are
tools:

e pfb2pfa for converting binary Typel font into ASCIIT Typel font
e pfal2pfdb for reverse conversion
e tt2t42 for converting TrueType font into Typed2 PostScript font
Together with binaries, libraries and data files, also documentation files and examples are in-

stalled. You can choose the installation path by yourself by build/configure, the default paths
are usually ‘/usr/share/vrr/doc’ or ‘/usr/local/share/vrr/doc’.

Removing the binaries

After the installation, you can remove the generated binaries from the source tree by typing
make clean or you can do an even better cleanup by make distclean.


http://vrr.ucw.cz/

Chapter 3: Tutorial 5

3 Tutorial

In this chapter, you will learn step by step how to create graphic objects. We start with
the simplest objects and guide you through all possible ways of creating, manipulating and
transforming objects to make sophisticated images.

Basically, VRR works with documents. Each document is stored in one file and may contain
several pages, with every page considered an independent image. To start editing a new image,
first create a new document by clicking the Ll icon or use the 'File/New’ (Ctrl + N) command.
A new file with one page will be created and a window displaying the contents of the page (the
View window) appears. Now you can start creating new graphic objects in the page.

3.1 The first simple graphic objects

3.1.1 Creating graphic objects — overview

In the toolbars on the left of the View, you can see many icons. Some of them enable you to
create new graphic objects. The icons are grouped in several categories; by clicking the category
icon on the left toolbar, the icons of that category are expanded into the right toolbar.

These icons are:
° Points and decorations
° a point
° adecoration point
° an arrow
° an intersection of two curves
° an n-gon defined by the number of apices, center and one apex
° Bézier curves
o a segment
° a quadratic rational Bézier curve
° a cubic rational Bézier curve
° Circles and circular arcs
° a circular arc defined by three points
° a circular arc defined by the center point and radius
° a circle defined by three points
° a circle defined by the center point and a point
° a circle defined by the center point and radius
° Ellipses, elliptic arcs
° the smallest ellipse defined by three points
° an ellipse defined by three points, rotation, eccentricity

an ellipse defined by two foci and a point

an ellipse defined by the center point, a point, eccentricity
° an ellipse defined by the center point and radii

° an elliptic arc defined by the center point and radii
° Texts

° aTEXtext
o I a text



6 The VRR User’s Manual

Choose an icon in the right toolbar and click it. Now you are ready to create your first graphic
object. Each object is determined by a certain number of points, for example, a segment is
determined by two points: its start point and end point. Read Section 5.3.4 [GO Creating
Modes|, page 41 for further details. Once you have clicked the appropriate icon, you must
specify the points to determine the desired position of the object. This is done by clicking the
drawing area with the left mouse button.

When choosing the points, you can see the object being created and getting its shape according
to the chosen points and the current position of the mouse cursor. In the status bar of the View,
there are hints that remind you what point is to be chosen at the time. Once all points are
chosen, the object is finished and you can either switch to another object type by clicking some
other icon, or you can start creating an object of the same type immediately.

3. 150 20, 139, 128, 1G,19,,

El

169, 54 140, 120 423 18,19, 169, 54 140,120,120 |18, 19,

I R e N e

-+

NS

T T I |
+
L T W B

+

Picture 2: Creating a new Bézier curve

When choosing the points, you may want to return one step back. That can be done by pressing
BackSpace — your last click gets forgotten and you can continue as if it had never been done.
By pressing BackSpace several times, you can return several steps back up to the beginning of
the currently created object. Or, by pressing Esc you cancel the creation and delete the object
at once.

When you create graphic objects, you can see small green and blue triangles emerge in the
positions where you clicked. These are not part of your image, they just mark the significant
points. Their meaning is described in more detail in Section 4.1 [Anchors and hangers|, page 27.

Note: Some objects available need to be determined by data different from a point position. For
example, when creating an n-gon, you are asked for the number of its apices. When creating a
text object, an editor opens for you to specify the source text of the object (see Section 5.1.6
[The Text Editor|, page 35).



Chapter 3: Tutorial 7

3.1.2 Creating graphic objects — the cat example

In the following example, we will create the following picture of a cat:

[~ : =IE]=]
E‘Bzé\"54321“12w345573w9w="
&\'5—7 =
Bk
o 3
i}
E ]
S
i T
\ o
X o 9 e
- i
@ 13
5| -
| ]
E
& =
o 3
() ;
o] o
8]
=
[Select & O 100.0%, 0.0°

Picture 3: The cat example.

We start with circles. Create three circles by center and point L4 to form the head and eyes of
a cat like in this picture:

P I OTTOTR s OO VOO . SUTOPP AT PO O OO e SUPOOES L SUORSEL | NTUOO LI TIVP o POOOL S HTTOO 90

5

7

&)
)
|

@]

ol
)

21 el YA WY (=Y (@) Bl Pile] | 1S o]
2

@

=

AL 0t b BT DOATS 0 s 0 o

&

4|4 e
}Choose the center of the new circle ET TF 100.0%, 0.0¢

Picture 4: The head and eyes of a cat.



Now continue with segments [ Draw ten lines — the ears and whiskers.

now look like the following picture:

Page 2 - Untitled 1 (unsaved)

The VRR User’s Manual

The picture should

Ll

#|e|s|o Blw =@ 8|00 o=y

R —

(

=
e

}Choose the startpoint of the new segment ET * 100.0%, 0.0¢

Picture 5: The ears and whiskers.

Create the cat’s mouth using quadratic Bézier curves .

el |o Blw|» @8] lo0l0 Fleopls g

Page ad aved [=I==]

N P S O 00 W 3 E S VO L
E
8
JS’

T

EE

7

T3

M

03

14

21

33

2]

5

= |

LE =

44 | o

}Choose the endpoint of the new quadratic... ET * 100.0%, 0.0¢

Picture 6: Bézier curves to form the cat’s

mouth.



Chapter 3: Tutorial 9

Now draw cubic Bézier curves Ll (the cat’s tail):

[>] BEE
'}5?‘\." 5. .14, e e e e e A e i e e e S Sl
| 3
]

o EE
|L‘ 3

FE
o E
Q) iE
Wi o
- ]
LI
P 2]

M
- 3

Ia’ll i
Q|
S 5
Q} EE

64
o|
o f
0 =
4 :J_'Jj
] ichoose the startpoint of the new cubic Bezier cu. .. ?{ F 100.0%, 0.0¢

Picture 7: The cat’s tail.

At last finish the picture with a quadratic Bézier curve. The resulting picture should look like
this:

<]

| e aved B=

’\.

e

eyl

N
A\

¢ |6 &]w|w @ 8]z |0|0 7]

49
i
™ ;
=
84

=l

[Select & O 100.0%, 0.0°

Picture 8: The resulting picture.



10 The VRR User’s Manual

3.2 Selection

To manipulate with the created objects, you need to specify which objects to work with. Most
tools work with the selection.

The simplest way to select an object is by clicking it in a View. First choose the Select/Transform
tool [, By Shift + click you add an object to selection and by Ctrl + click you remove it
from selection. Clicking an object without any of Shift or Ctrl pressed clears the selection
and makes it the only selected object in the page. The keyboard shortcuts work similarly for
rectangular selection. Instead of plain clicking, press the left mouse button, by dragging it define
a rectangular region, and release. This modifies the selection with all objects inside the region.
In addition, the “Edit/Select all” command (Ctrl + A) selects all objects in the page and the
“Edit/Clear selection” command (Shift + Ctrl + A) clears the selection. You can also clear the
selection by clicking the drawing area far enough form any object.

You can see a red rectangle bounding all selected objects. Also, the selected objects are drawn
in red instead of their real color. This helps you to recognize which objects are selected and
which are not.

_E

Picture 9: The red selection bounding box.

The selection is local for pages, which means that selection changes in one page do not affect
selection in other pages at all. (This is true not only for selection, but for all editing actions of
page contents. Undo history is local for pages, too.)

Another way to select objects is to do that in the Universe browser window (see Section 5.1.3
[Universe Browser|, page 32).

3.3 Basic actions

The right mouse button in the View opens a pop-up menu. All editing actions available in the
View can also be found in the menu. We stress the most important of them:

Delete, Cut, Copy, Paste

All these basic actions work with the selected objects and have the usual keyboard shortcuts:
Delete, Ctrl + X, Ctrl + C, Ctrl + V, respectively. After paste, the current selection is modified
to contain exactly the pasted objects.

Undo and redo

Each page has its own undo history which is independent of undo histories of other pages.
Therefore, you can undo and redo actions performed in a page without undoing or redoing any
action in other pages, regardless of their global historical order.

Optional: There is also a global undo history which keeps track of actions not belonging to any
page contents.



Chapter 3: Tutorial 11

Save, load, export and import

All documents created in VRR can be saved or exported to a file in one of the several supported
graphic formats. To save a document, use the “File/Save” menu item. The default format is
the VRR native format — a lisp-like text file described in the VRR Programmer’s Manual. The
file can be loaded again using the “File/Open” menu item.

The export menu items can be found in the “Export” menu category. The available formats are:

e PDF — export the whole document, one page per page
e PS — export the whole document, one page per page
e EPS — export the one specified page only

e SVG — exports the one specified page only

VRR also allows importing pages from SVG and IPE5 native format. Choose a page into which
you want the image to be imported. Then choose “Page/Import SVG” or “Page/Import IPE5”
to import the image.

In SVG import, VRR supports basic graphic objects and their properties. It does not support
groups, filters, gradients, triggers, aliases and cascade styles. IPE5 supports all features except
for splines, patterns, colors and fills (we plan to improve it in future releases).

3.4 Transformations of graphic objects

All the transformation tools of VRR allow you to transform and view the transformation changes
continuously. If the process is too slow, then only some mouse cursor position changes are
processed (but the button release is always processed so that the dragged object gets exactly on
the position where you dropped it). In case that a transformation step fails, the objects stay at
their last well-defined positions and wait for another successful transformation step.

3.4.1 Transforming using the Select/Transform tool

Now we will show how to perform affine transformations (like move, rotate, skew) on geometric
objects. Switch to the Select/Transform mode by clicking the [4 icon. Select the objects
you want to transform (see Section 3.2 [Selection], page 10). On the red bounding box of
selection, there are small squares of various colors. These are the transformation gadgets, each
gadget stands for a certain transformation. While holding the Shift key, you can see different
transformation gadgets.

Move

By dragging the red cross in the middle of the bounding box or by dragging the box boundary
(far enough from a gadget), you move the selected objects.

Resize

On the bounding box, there are eight red gadgets — in each corner and in the middle of the sides
of the rectangle. The gadgets in the middle of each horizontal side resize the objects vertically
and conversely. The horizontal size remains unchanged, thus this action modifies the aspect
ratio. To scale equally in both directions (and keep the aspect ratio unchanged), use the corner
gadgets. The red cross is the fixed point of the resize transformations.



12 The VRR User’s Manual

r i Page 1 - Untitled 4 (unsaved) B E(E )
CiRdE
&K TF F = i =
gl 5 C.;O
o N
RN P
Gl
o] ™
g 1
L
IT i} i
E
it i_
£l
o
=
Sl
E ; iz = Gl
o 3 E
B g — i ]
| [Select # ¥ 100.0%, 0.0*
Picture 10: Transformation gadgets in the normal mode.
I'I : # Page 1 - Untitlad 4 (unsaved) : i E“E’“_-E%
zEIE R ke
& T :
Bl 5
= 3
el
0 3
9 7
g 1
L
o
il 1
|l
-
E
Sl
(]
Beilll g
o 3 E
B e o
| [Select # F 100.0%, 0.0*

Picture 11: Transformation gadgets in the Shift mode.

Rotate

While holding the Shift key pressed, the corner gadgets become magenta and then by dragging
them, you rotate the selected objects. Here, the red cross is the fixed point (the center of the
rotation), too.



Chapter 3: Tutorial 13

Skew

VRR also allows you to skew selected objects. Like for rotation, during the whole operation you
have to keep the Shift key pressed. The blue segment which appears while pressing the Shift
key represents the skew axis. Only the direction (and not the length of the segment) is important;
the line coming through the segment contains all the fixed points of the transformation. Now
drag the blue gadgets (in the middle of the bounding box sides) to skew according to the axis.
Notice that dragging the gadget in the direction perpendicular to the axis has no effect, only
the parallel movement causes the skew.

Edit the fixed points

While holding the Shift key, you can also change the position of the red cross and the skew
axis point by dragging them.

3.4.2 Santiago’s transform tool

All affine transformations can be done using the special Santiago’s transform mode as well. First,
select the objects which should be transformed (see Section 3.2 [Selection|, page 10). Then press

the icon to switch to this mode.

Having the Shift key pressed, click to position the three transformation crosses. The first
click places the first cross, the second one places the second cross etc. By clicking an already
positioned first or third cross, you remove it. By clicking the second cross, you toggle it between
the states blue, red, removed. If a cross with lower number is removed, the crosses with higher
number are disabled (gray).

Page 1 - Untitled 4 (unsaved)

8 5 ) QQ;O

0 3 "3

BN GQ’

C 3

J

o] 73

D LT

& o

1

% 17
e
EE
o IS

& o

53

(gt

S 5_ |
%) g [ b
| [Select 7 ¥ 100.0%, 0.0"

Picture 12: The three transformation crosses of Santiago’s transform mode.

Now drag a cross to transform. For all crosses, the transformation is computed in such a way
that the point from the original cross position becomes the point at the new cross position.

The first (magenta) cross is the gadget for move.



14 The VRR User’s Manual

The second (blue/red) cross is the gadget for resize/rotate, which are all possible linear trans-
formations (may be combined together). The first cross is the fixed point.

The third (green) cross does the skew. The former crosses (and the line connecting them) are
the fixed points. This enables you to do all affine transformations.

Note: The transformation in the Santiago’s tool is computed according to the relative positions
of the three crosses among one another. It does in no way depend on their absolute position in
the image (or with regard to the selection bounding box), which might seem somewhat surprising
at first.

3.4.3 Predefined basic transformations

There are also some predefined transformations. They can be found in the Edit/Transform
category of the View pop-up menu. They are: flip vertically, flip horizontally, rotate by 90
degrees, rotate by 180 degrees, rotate by 270 degrees; they work with the selection, too.

3.5 Modifying the properties

3.5.1 Modifying the properties — Introduction

In the previous parts we have learned how to create, manipulate, and transform a graphic
object. There are also other ways how to alter the object’s appearance. Select the object (see
Section 3.2 [Selection], page 10 to find out how) and open the Property window by choosing
either the “Edit/Properties” or the “Windows/Property window” menu item. The two ways
differ slightly, as described in Section 5.1.5 [The Property Window], page 34. Basically, the
Property window opened in the latter way reacts to selection changes and updates the displayed
objects accordingly. Also, you can edit properties of multiple objects in it.

The property window contains the list of all properties of the selected object(s). You can change
their values here; however, the attempt to change some of them may fail for various reasons,
mainly the geometric dependencies. If you try to change the coordinates of the center point of
a circle determined by three points on its perimeter, it fails. In that case, the value remains
unchanged.

Some values can be edited directly by putting down the new value or using the arrows in spin
buttons (edit boxes with arrows that changing the value by certain predefined steps). Some
values are to be chosen from the list and for some property types, an editor will be opened (text,
color, ...).

The “invisible” property allows you to make any object invisible on the drawing area. But
physically, it is still in the object tree (see Section 5.1.3 [Universe Browser|, page 32) and can
play part in geometric dependencies.

You can also create, edit, and delete your own properties; that can be useful for making some
notes or in script processing. To add a property, press the “Add ...” button and fill in the
name (the key), type, subtype and value of this property. Note that the property key must be
unique. To delete some properties, select them by clicking their names in the Property window
(or unselect by clicking once more). Then press the “Delete” button. Note that not all properties
can be deleted; some of them are important for geometric and graphic features of the object.
But you can always delete the properties you created yourself. Even these property actions can
be undone and redone using the local undo/redo.



Chapter 3: Tutorial

15

3.5.2 Modifying the properties — The car example

We will create a simple picture and try to modify the properties of some graphical objects:

<]

o s

| { e

'\‘“D

ole] |

S [ >

| &]w F=]®

<3

y
Ly

g |&

=

|
[ Lofe

[Select 7 O 64.0%, 0.0"

Picture 13: The picture of a car drawn in thick colorful lines.

First, draw a circle (defined by the center and the radius) and in the property editor change the
stroke-cap to round and property “stroke-width” to 9 mm. The values you set are saved and
used again for newly created objects. Create another circle and it will be drawn with stroke

width 9 mm.

conic
center-x
center-y
rotation
a-radius
b-radius
start

dif

ecc

start-dif

4

B [fom -
[oo0  Flmm =
fow e |~
oo [om -
oo [lom -
Wﬂ,m >

6.2832 Jad |+
0.0000 -| param =

-

strokecap  butt

strokejoin  miter >

stroke-width |.0000 Hmm -

stroke-color

fill-color I
invisible ||
name Inoname

Add ... ‘ Delete Units ...

I

Picture 14: The Property editor window.




16 The VRR User’s Manual

Now change the “center-y” coordinates and the “radius” properties in both circles to the same
value (the circles will be aligned horizontally and have the same size). Draw a segment with end
points in the centers of the two circles. Now create two intersections of the segment and both
circles (using the Xl icon).

=

] ___Page 1- Untitled 3 (unsaved) iii}‘
lird [
& LD\O 63 =
|~ 53
[Be[x 3
“|ol,
P 3
2 E
~ E
O
| T
&l E
= v
13
.
Gl
=T 3]
el
L
54
5
v 7] E7]
| I 2]
| [choose the first object for the new imer... % (¥ 100.0%, 0.0*

Picture 15: A black line connecting the center points.

Select the segment and make it invisible (set the value of the “invisible” property to true). Now
let these two intersections make a segment. Draw another two lines (car chassis). The picture
should look like this:

S EE
=l

y|o]C

DI
.

Sa[e A
|

=l
o] T J :J;Ei
[ \Fhrna e o B A S ha qu“g:inmanr | 7 A nos nJ.m

Picture 16: The car chassis.



Chapter 3: Tutorial 17

Continue and draw a segment, a quadratic Bézier curve (the roof) and an elliptic arc defined by
3 points (the front end). For this elliptic arc, set the property “conic” to “cw” or “ccw” to get
this picture:

89 Lall

]
L]

olo ]
3

=

=l
S : s i ﬁ

[calar & 7% R4 mos afw

—— e |

Lelele | E]w el e]=

Picture 17: The car hood.

Now select both wheels and set their fill color to black (do not forget to set alpha to 1 to make
the fill color opaque). Draw some segments for light rays, change their color to yellow, thicken
the line to 3 mm. Finally, draw the windows with blue lines:

[~1 =Ex]
77 S I 2.0‘2.4‘6.8‘10._15%1
o

O

Lé

o]
=l

{

)
A

3
=

.

N DEEEE

vl

g
L I 3051

[select 7 O 64.0%, 0.0°

Picture 18: The finished picture.



18 The VRR User’s Manual

3.6 Snap — introducing geometric dependencies

3.6.1 What is snap? What is it good for?

In the View toolbar, there are yet some unexplored icons. Their purpose is to modify the snap
settings. When creating new objects, you usually determine some point positions by clicking;
and snap may cause the point to be aligned to a significant object nearby. We say that the
aligned point is snapped. There are several snap modes. If no snap mode is switched on, the
chosen point always becomes exactly the position where you clicked. The modes are:

o [¥ Snap to hangers — a hanger is a significant point (marked by a blue triangle when needed,
see Section 4.1 [Anchors and hangers|, page 27 for more info.) Hangers are, for example,
the end points of a segment, the center point of a circle, etc. When this mode is switched
on, the click positions are aligned to a nearby hanger, if there is such.

° Snap to grid — if you switch this mode on, a grid appears and the click positions are
aligned to grid points. The grid dimensions can be modified in the Settings window (see
Section 5.1.7 [Global Settings], page 35).

° Snap to lines — aligns the click positions to curves and creates parametric points if needed.

o [ Snap to intersections — aligns the click positions to intersections of curves. The intersec-
tion does not have to exist as a regular object; it is computed and created automatically.

The snap modes are independent on each other and can be switched on and off or combined
arbitrarily. If you switch at least two modes on, then the closest object of all is chosen regardless
of its type (hanger, grid point, intersection or curve).

Create dependencies [#] - the last snap icon does not represent any snap mode. It controls
the dependency effects of snap. If switched off, the snap just modifies the click position a little
without creating any geometric dependency. Otherwise, if there is a significant object near, the
point gets stuck to it and anytime the object is moved or transformed, the position of the point
is updated as well. The only exception is snap to grid, which generates no dependencies even
when “snap to dependencies” is on.

There is a limit of the maximum distance between the original point and the snapped one. By
default, the limit is ten pixels and can be changed in the Settings window (see Section 5.1.7
[Global Settings], page 35). Naturally, the physical distance limit depends on the current zoom
as well.

Note: It is not a very good idea to combine snap to hangers with snap to lines. If the target
hanger is positioned on a curve (which it usually is), the point might get snapped on the curve
very near the hanger but not on the hanger itself.

Note: When trying to transform objects created with some of the snap modes on, you might
have encountered an error message like “This selection cannot be transformed.” The reason for
such an error are the geometric dependencies. For example, if you snap the start point of a
segment to the end point of another segment, you cannot move the dependent one. But you can
move the other one or both of them. If you need to release the object from dependencies, use
the Anchor rehang tool (described Section 3.6.3 [Anchor rehang], page 19).

In the next two pictures, you can see an image containing geometric dependencies before and
after transformation. The body of the pig is moved and all snapped objects are recomputed
accordingly. Notice that, when moving the ellipse, the dependent objects change their shape,
not simply move. That is because they are determined by other points which are not being
transformed.



Chapter 3: Tutorial 19

]

s bl

H

|

N

[V VS

Picture 19: A pig before the transformation.

N
L

e

@)

2 N |

e

D=
=
©

B
L

Picture 20: The pig after the transformation.

3.6.2 Fifi

Fifi is a secondary mouse cursor which indicates the snap position. By default, it is disabled;
you can enable it in the Settings window (see Section 5.1.7 [Global Settings|, page 35).

Note: The implementation of Fifi is currently somewhat experimental. It is not recommended
to use Fifi for large images when snap to intersections is on; VRR has no optimizations for
computing so many intersections so far, which makes it considerably slow.

3.6.3 Anchor rehang

Suppose you have created an object and you want to reposition some of the points you chose
when creating it. You can do that using the [©] Anchor rehang mode. First, select an object;
its “source” points appear as green triangles (anchors, see Section 4.1 [Anchors and hangers],
page 27). By clicking any of them and clicking the destination hanger, you reposition the
appropriate anchor and modify the object’s geometric dependencies accordingly.

When choosing the new position of the anchor, snap works normally and you can use all the
snap modes (see Section 3.6.1 [What is snap? What is it good for?], page 18).



20 The VRR User’s Manual

3.7 Creating texts

3.7.1 Texts — Overview

Apart of all other features, VRR has a sophisticated system for working with text. In addition
to common text objects, it allows you to create text objects typeset by TEX and make them
part of your image. You can create almost anything from a short math expression to several
paragraphs of a text. Typel PostScript fonts and TrueType fonts are fully supported (including
exports to various formats) in ordinary text objects.

Page 1 - Untitled 1 (unsaved) i : [=)=][

B =
& He 5]
0o~ 5
[Fe x|,
ad el N et i
)
B
A
. 7
1
e
. Mathematical TeX Text -
S 4]
Ca i
M 2
o I L
64 -
gl e 17_»1
| [Select o ¥ 100.0%, 0.0¢

Picture 21: A simple example of TEX and ordinary text objects.

Creating an ordinary text object LY and creating a TEX-text object LM differ slightly, but basically
they are the same. Both start with choosing a reference point to specify the text object location.
An editor window is then opened and you fill in the source text and all the desired options. The
“align”, “relative-shift” and “absolute-shift” properties control the position of the reference point
with regard to the bounding box of the resulting text. The property values are described in
Section 5.3.4.5 [Texts], page 44.

For example, if you set the refpoint values to: refpoints-relative, bbox-relative, 0.5, 0.5, 0.0 and
0.0, the text will be positioned in such a way that center point of its bounding box equals the
reference point.

The text area of the editor shows the source text of the text object. You can edit it directly,
load it from a file or save it to a file (both in the character encoding set in your locale). You
can also edit the text with an external editor (like vim, emacs, etc). To run the editor, make
sure you have set its name (in the Settings window, see Section 5.1.7 [Global Settings|, page 35)
and press the “Edit with external editor ...” button; when you have finished editing, save all
changes and finish your editor. VRR looks frozen while running the external program as it is
waiting for it to exit.

Note: This does not work properly with editors that fork their process at startup (gvim, for
example).



Chapter 3: Tutorial 21

Any changes you have made to the source text take effect after pressing the “Refresh” button
or by pressing the Ctrl + Enter keyboard shortcut.

For M ordinary text objects, the source text is the same as the text displayed except for newlines
which are drawn as spaces; if you want to create text labels containing more than one line, use a
TEX-text object. For TEX-text objects, the source text is a TEX source code. You can use any
TEX commands you like. The only restriction is that VRR cannot properly handle TEX output
containing more than one page.

You can try, for example, this source text:

My first \TeX{} code in VRR is an integral:
$\int_375 x~2 {\rm d}x$

or an even nicer one:

\def\VrR{V\kern-0.15em\lower0.5ex\hbox{R}\kern-0.15emR}

My first \TeX{} code in \VrR{} is an integral:

$\int_3"5 x"2 {\rm d}x$
In case of the L ordinary text, there are additional widgets in the editor for choosing the font
and font size. In the font combo box, you can see the list of all installed fonts.

Note: The text pixmaps for large text sizes consume a lot of memory. Therefore, if you set the
font size to a too large number or scale the text object to be too large, the text object becomes
invisible to prevent the size of the pixmap to exceed the limits. But the text object itself is not
destroyed — when you make the text smaller again, the text reappears.

| <|
(1]
al
x|

g
&
dn
b
w
(%)
—
b
=]
=
]
)
=
v
=3
=
[»[» 3

D EEREE-

<
R

= i VRR
s NBB
of

ES
i

E
o

&

-

L

4 2]
1Chcose the refpoint of the new text 7 T 100.0%, 0.0*

Picture 22: Many text objects with different fonts and transformations.

3.7.2 Texts — Examples

We will create some more examples of mathematical TEX text. Switch into the TEX text
creating mode and write the following source text:



22 The VRR User’s Manual

\noindent

\centerline{For which $a$ does the integral

$\int_O0~\infty 1 - e"x - axe {-x}{1 \over x} {\rm d}x$ converge?}

\centerline{Evaluate this expression for $a \in (-1, 1)$.}
Create an ordinary text “Mathematical TeX text” and place it below the created TEX text.
Proceed with a vertical segment and an arrow on the top of it (the arrows can be found in
the View toolbar in the “Points, decorations” category). The resulting image looks like the one
in the beginning of this section.

The following example demonstrates some of the large amount of TEX features which you can
use in VRR as well:

e
)

L

&

] Rudyard Kipling
Iff

7

If you can keep your head when all about you
Are losing theirs and blaming it on you,

If you can trust yourself when all men doubt you,
But make allowance for their doubting too;

If you can wait and not be tired by waiting,

Or being lied about, don’t deal in lies,

Or being hated, don't give way to hating,

And yet don't look to good, nor talk too wise.

m‘

\Y‘pl

wl

} Rewards and Fairies

2005 .
T — >

] ]Chocse the refpoint of the new TeX text g TF 156.2%, 0.0"

Picture 23: A more sophisticated TEX text.

The TEX source code for the previous image is:

\hsize=8cm\hoffset=1cm

\vsize=6cm\voffset=1cm

\parindent=0pt

\footline={\hfil 2005\hfil}

\leftline{\bf Rudyard Kipling}

\centerline{\it If\rm\footnote{\dag}{Rewards and Fairies}}
\vskip 0.5cm

\obeylines

If you can keep your head when all about you

Are losing theirs and blaming it on you,

If you can trust yourself when all men doubt you,
But make allowance for their doubting too;

If you can wait and not be tired by waiting,

Or being lied about, don’t deal in lies,

Or being hated, don’t give way to hating,

And yet don’t look too good, nor talk too wise.



Chapter 3: Tutorial 23

3.7.3 TeX tutorials

The previous examples of TEX source code are far from cover all the useful TEX macros and
features. It is surely beyond the scope of this book to teach you how to use TEX. To learn more
about TEX, you might want to try some of the following books:

Donald E. Knuth: The TgXbook, Addison-Wesley, reprinted 1993 — if you want to become a
TEX guru, this is the right book for you.

Paul W. Abrahams, Karl Berry: Tex for the Impatient, Addison Wesley 1990 — a simplified
TEXbook. FEach concept and command is explained in a separate entry with many helpful
examples. It is available online at http://tug.org/ftp/tex/impatient/.

Michael Doob: A Gentle Introduction to TEX — a very easy-to-understand tutorial for beginners.
It is available online at http://ctan.tug.org/tex-archive/info/gentle/gentle.pdf.

3.7.4 Texts and Snap — the Bézier subdivision example

Now that you can create and transform objects, use snap and create TEX texts, you are ready
for a more sophisticated example. We will create this picture:

=1 Ty CIETE]
g‘ }(. w| |7 -6 5 -4 3 2w 1 0 1 2 3 4 T vebr Lo o] T4
&[5 )
my LE
— 5
e E
| T
O
O] 73
A
[
[ &
D
B
& -
43
o]
ol =
¥ iz
ol i 2
“dd b
| [select # T 100.0%, 0.0*

Picture 24: The Bézier subdivision example.

First, create four circles. Then create four TEX texts with the TEX source codes $X_1$, $X_
2$, $X_3%, $X_4%, and snap them to the center points of the circles. If you keep the texts’
default properties unchanged, the texts will overlap the center points. To avoid that, modify the
absolute-shift-x property in the Property editor (the meaning of the absolute-shift-x property
is quite obvious). Set the values so that in the Anchor rehang mode you do not see the center
point hangers being overlapped by the texts.


http://tug.org/ftp/tex/impatient/
http://ctan.tug.org/tex-archive/info/gentle/gentle.pdf

24

BRI E R EEE e

The VRR User’s Manual

o

e e

et

it
L

iz

4

e
g
e
i
=
]
)
=
T
cn.]
Ml

|
N

}Choose the refpoint of the new TeX text [’.‘ ¥ 100.0%, 0.0¢

Picture 25: Four circles with labelled center points.

Now create segments connecting the points X; and X5, X; and X3, X5 and X, so that the end
points of the segments are snapped to he circle center points.

Create a quadratic Bézier curve with the control points X3, X7, X, Xy:

AARE NRED A EEE =0

- J l/

{520 et et e o R o e e 3

i e b

Wit
i

12l

Al

|
gl

Select ¢ TF 100.0%, 0.0
J 5§

Picture 26: The four circles connected by segments and a Bézier curve.

Create parametric points in the middle of the Bézier curve and the segments (switch on the
line snapping mode, choose the “Points, decorations” category in the left toolbar and click the
“New point” icon in the right toolbar) and click on the line. The parametric point is created,



Chapter 3: Tutorial 25

now change its property “parameter” in the Property window (see Section 3.5 [Modifying the
properties|, page 14) to value “0.5”. Repeat that for each segment and also for the Bézier
curve. Describe these points with TEX labels: X; 3, X, and X, 4 for the center points of the
segments, and X 53 4 for the Bézier curve’s parametric point (with the source code $X_{1,2}$,
$x_{1,2,3,4}$ and similar).

Now create segments connecting the parametric points, create parametric points in their middles
and link them by a segment (the middle label of this segment is X; 23 4). The resulting image
is displayed in the following picture:

=] T T BE0)
52' }(. s 7 16 5 -4 3 2w 1 0 1 A 3 4 T vebr Lo o] T4
&[5 )
my LE
— 5H
e E
el
ol
Q| 7
A
[@
[ &
D
B
& -
43
S
ol =
¥ iz
ol i 2
|« —— Y
| [select # T 100.0%, 0.0*

Picture 27: The resulting Bézier subdivision example.

To see how the created dependencies work, try to move some of the circles and watch the rest
of the image.



26 The VRR User’s Manual

3.8 Groups and paths

Groups

In VRR, you can also work with groups. A group is a set of graphic objects which behaves as
one object from outside. It is selected or transformed as a whole, or you can open a View on it
and manipulate its contents individually.

The group structure of a page is hierarchical: a group can contain multiple groups and/or indi-
vidual graphic objects in it. To gather objects in a group, select them and choose “Group/Group
selected”. To break a group and make the objects independent again, choose “Group/Ungroup”.
In the Universe browser window you can see the group hierarchy. To open a View for a group,
use the “Group/Open in new view” command. When viewing the contents of a group, the
contents objects of superior groups become invisible and you can only see the contents of the
group and its subgroups.

The z-order

The main purpose of groups is to make your image structured. The objects inside each group
have a certain order; new objects are placed on top. This order is called the z-order and can
be edited using the “Edit/Move up”, “Edit/Move down”, “Edit/Move to front”, “Edit/Move
to back” commands or the U, D, Shift + U, Shift + D keyboard shortcuts, respectively. In a
superior group, the group moved in the z-order as a whole. By grouping some objects, you group
them together in the z-order as well.

Paths

A special case of a group is a path. In addition to the features of groups, a path has its own style
properties which are used for all its contents. Thus, if you have, for example, a path with blue
stroke-color, all lines are drawn in blue regardless of the colors of the individual lines. Moreover,
a path can be filled — the fill-color property controls the fill color of the entire path.

To create a path, switch the path mode on by clicking the icon “Path mode on/off” in the
View toolbar. You can see that some of the icons become disabled as not all graphic objects can
be contained in a path. You can now create segments, Bézier curves and arcs. Start with a first
one and then continue; each object sticks to the end point of the previous one automatically,
because the path must be continuous. When finished, you can either end the path with the
command or with the [2] command. The latter one completes the path with an enclosing
segment. In both cases, you can continue creating another path or switch the path mode off by
clicking the L1 icon again.

See Section 4.2.1 [Groups|, page 29 and Section 4.2.2 [Paths], page 29 for more detailed descrip-
tion.

3.9 Controlling VRR from the command line

All the editing actions accessible from GUI (and even some more) can be performed via a
command line. VRR has a text console I'1 which accepts commands in the Scheme programming
language. The available data types and functions are described in Chapter 6 [Scheme|, page 46.

The more detailed description of the Scheme console can be found in Section 5.1.10 [The Scheme
console], page 38.



Chapter 4: The Anatomy of the Universe 27

4 The Anatomy of the Universe

This chapter explains the anatomy of pictures: what are hangers, anchors, graphic objects, what
are geometric dependencies, how it all works together, ... You will learn many details about
the objects you have met in the previous chapter.

When we talk about “the universe”, we mean all the objects reachable for you; they are doc-
uments, pages, graphic objects etc. and are visible in the Universe Browser window. We now
start with the smallest elements you can manipulate with and gradually build the whole universe
in the bottom-up direction. The most important elements are the graphic objects. They contain
anchors and hangers. The graphic objects are grouped into groups, pages and documents.

4.1 Anchors and hangers

Since you have learned how to create new graphic objects (in Section 3.1 [The first simple
graphic objects|, page 5), you know that every object is determined by a certain number of
point positions (plus more data, like properties etc). The number of point positions is fixed for
each object type. On the other hand, the object generates some significant points where other
objects can be snapped.

EX
7
™
B
5]
=]
=
£

o]

ol
=3

=

=]
a

Picture 28: A simple image with hangers and anchors displayed.

In VRR terminology, we talk about hangers and anchors. Anchors are marked by green triangles
and symbolize the “input” points, whereas hangers are marked by blue triangles and symbolize
the “output” points. In the picture above, you can see a circular arc and a selected cubic Bézier
curve (in the Anchor rehang mode, so all the hangers and the anchors of selection are visible).
Notice that the hangers of an object can but do not have to correspond with its anchors. The
circular arc has three anchors: the start point, midpoint and end point. The start point and
end point have their matching hangers, but midpoint does not. There is a center point hanger
instead. The start point anchor of the Bézier curve is hanging on the end point hanger of the
arc.

Naturally, the number of on object’s anchors does not have to be equal to the number of hangers.
As observed in the picture, the Bézier curve has four anchors, but two hangers only. An anchor
must hang on exactly one hanger. A hanger can hold arbitrarily many anchors.

Optional: Apart from position hangers, the objects can have curve hangers as well. For example,
a parametric point is not associated with any particular point position; it is determined by the
whole curve and a parameter (a number between zero and one which defines the point’s relative
distance from the start point). Therefore, its anchor does not hang on any position hanger,
it hangs on a curve hanger of a curve. So it is not precisely true that a Bézier curve has two
hangers only, it has a curve hanger as well.



28 The VRR User’s Manual

When creating a new graphic object and choosing the point positions, you determine the posi-
tions of the object’s anchors. If you use the “Snap to hangers” mode (see Section 3.6.1 [What is
snap? What is it good for?], page 18) and click near a hanger, you hang the anchor on the hanger
and make them associated. We say that you created geometric dependency. From now on, the
dependent object will be recomputed automatically after any change of its anchors’ hangers.

Note: Naturally, because of the recomputing order, you cannot create circular dependencies —
you cannot have an object A hanging on B, B hanging on C and C hanging on A. Also, you
cannot have an object’s anchor hanging on a hanger of the object itself. Such dependencies are
forbidden and when trying to create them, you will not be successful.

The following picture shows the dependency diagram of the previous image:

midpoint

startpoint endpoint

Circular arc
(by three points on its perimeter)

startpoint .
endpoint

centerpoint

1st control point  2nd| control point

startpoint endpoint

Cubic Bezier

startpoint endpoint

Picture 29: The dependency diagram of the previous image.

The big ellipses represent the two graphic objects. Anchors are represented by half-circles
pointing up, hangers are half-circles pointing down. You can see the start point anchor of the
Bézier curve hanging on the end point hanger of the arc.



Chapter 4: The Anatomy of the Universe 29

Mouse-clicks

Notice that every anchor hangs on a hanger, even those that are not snapped. The white half-
circles stand for special hangers called mouse-clicks. Mouse-clicks do not belong to any graphic
object, they exist freely inside the page. Moreover, they are not connected to any fixed point
position, so the object hanging on mouse-clicks only is independent and can be transformed
freely.

The mouse-clicks are created and destroyed automatically, you do not have to do that explicitly.
But they are full-value hangers and they are marked with blue triangles as well. You can even
rehang anchors on them using the Anchor rehang mode (Section 3.6.3 [Anchor rehang], page 19).

4.2 The group tree of a page

4.2.1 Groups

A group is an ordered set of graphic objects which behaves as one object from outside. It is
selected or transformed as a whole, or you can open a View on it and manipulate its contents
individually. The selection in a group is independent of other groups.

The group structure of a page is tree-like. A group can contain multiple groups and/or individual
graphic objects in it. The order of the objects inside a group is known as the z-order, the newly
created objects are positioned to the top (the start) of the group. A group is atomic in the
z-order of its superior group. To learn how to edit the z-order, see Section 3.8 [Groups and
paths], page 26.

The group hierarchy is independent of the geometric dependencies. An object can be dependent
on another object in a totally different group. Anyway, we do not recommend you to create
very complicated dependency relationships which cross the group hierarchy many times, as you
might easily lose track about what you have created and which object is dependent on which
one.

A page is a special case of a group. The page’s default group is called the top-level group. When
you create a blank page, it contains the top-level group only. Top-level groups are not visible in
the Universe browser and you cannot delete, ungroup or manipulate them.

4.2.2 Paths

A special case of a group is a path. In addition to the features of groups, a path has its own style
properties which are used for all its contents. Thus, if you have, for example, a path with blue
stroke-color, all lines are drawn in blue regardless of the colors of the individual lines. Moreover,
a path can be filled — the fill-color property controls the fill color of the entire path (in the
“even-odd” fill style). Apart from the fill style, the way a path is drawn differs slightly from the
way VRR would draw all the individual objects: the lines are connected together and line caps
are used for path end points only.

The objects in a path obey strict geometric dependency requirements. The start point hanger
of each object must hang on the end point anchor of the previous one. Therefore, when you
try to use the Anchor rehang tool (see Section 3.6.3 [Anchor rehang], page 19) on the contents
of a path, it usually fails as the dependency rules cannot be (even temporarily) broken). Not
all objects can be contained in a path — the suitable objects are segments, Bézier curves and
circular/elliptic arcs.

4.3 Documents and pages

As you already know, every page contains a tree-like group hierarchy. It was also already
mentioned (in Section 3.3 [Basic actions], page 10) that each page has its own undo history and
that the edit actions performed on a page are independent on actions performed on other pages.



30 The VRR User’s Manual

You can undo and redo actions in a page without any effect on other pages’ undo histories,
regardless of the global historical order of edit actions. These undo histories are called “local”.

To store edit actions not connected to contents of any page, VRR has the “global” undo history.
It can be opened in the Undo History window (Section 5.1.4 [The Undo History Window],
page 33), too. It contains creating, deleting, selection changes of documents and pages (not the
pages’ contents), changes of global settings etc.

Note: When you create a page, edit its contents and then undo a global action, you delete the
page. But the contents of the page stay untouched; if you redo the global action, you restore
the page together with all its graphic objects. The same holds for deleting pages, and creating
and deleting documents works similarly.



Chapter 5: The Anatomy of the Graphical User Interface 31

5 The Anatomy of the Graphical User Interface

This chapter explains all the important features of the GUI — all windows, the context, all graphic
objects that can be created and the procedure how to do it.

5.1 Windows
5.1.1 The Main Window

When you run the application, the main window opens. It allows you to do some basic actions
not connected to any particular document (create new documents, load documents from files,
open some windows as Universe Browser or Undo History, set global VRR settings or open help
files). These windows will be described in the following chapters.

File Windows Help

Jols|o]e[e| [\ a]

I 2,

Picture 30: The main window.

By closing the main window you terminate the program. Before the exit, it asks you if to save
the unsaved files if there are any.

5.1.2 The View

The purpose of the view window is to display the contents of a document’s page or group.
Each view displays one page/group, while a page/group can be displayed in several independent
views. All changes performed to the contents are displayed in all views at once. All views
displaying the same page/group can be used interchangeably. By closing the view, you do not
delete the page/group nor the document containing it, you only close the view. After creating
a new document or opening the existing one (with at least one page), a view for the first page
is opened.

When displaying the contents of a group, the objects inside the superior groups are invisible;
you can only see the contents of the group and its subgroups.

The drawing area of the view is potentially infinite. However, the scrollbars always scroll over
a limited area. The area is enlarged automatically to exceed the bounding box of all objects a
bit. Or you can enlarge it manually by clicking the scrollbar arrows repeatedly when the border
of the area is reached — the scrollbar arrows allow you to move even farther than the current
editable area borders and thus you have the area enlarged.

Some settings of the view can have effect on the displayed image without changing the image’s
properties actually. These are zoom and rotation. Their current values are displayed in the
bottom right corner of the view. Zoom can be changed by scrolling the mouse wheel, by pressing
the -, = keys or the -, + numpad keys. Pressing the R key resets both rotation and zoom.

By dragging the middle mouse button you move the image in the view or the view over the
image — choose one of the possibilities in the Settings window Section 5.1.7 [Global Settings],
page 35, the “Panning: Drag the image” toggle button. If set to true, you drag the image and
the mouse button stays pinned to a point position. Otherwise, you drag the view and the image
moves in the opposite way than the mouse cursor does.

You can also center a chosen point in the view using Ctrl + middle mouse button click. The
right mouse button opens the context menu and the left mouse button does all the rest — almost
all editing actions are done by clicking the left mouse button.



32 The VRR User’s Manual

The buttons in the toolbars (on the left side of the view window) can be used to create new
graphic objects, set snap modes etc. In the left toolbar, there are icons that represent an icon
category. By clicking them you expand the contents of the category into the right toolbar.

The left part of the status bar occasionally shows some messages, usually error messages. In the
right part you can see hints regarding the current editing actions (what to do in the particular
editor state, see Section 5.3 [The mechanism of creating new graphic objects|, page 39.) The
icon in the bottom right corner indicates that the page has been modified since the last save.
The [@] indicates that the page is currently being edited (is part of the context; the same icon
can be observed in the Universe browser).

[+] egral Logo (/roo examples/logo [=][=]x]
)52 y kae s e bg B2 b0 ke fe JA PR J0 R B Tl
[ 4REE =
o4
|:| T
el
e
O
<%
=
@ 0
2
sl 2
E
=
4 L5
1
(] 0
ﬁ ’>
G =l
:',ﬂ_ﬂ | J.L’.d
| [select & ¥ 484%, 0.0

Picture 31: The View window.

In the corners between scrollbars and rulers, there are four buttons. The upper buttons rotate
the view. The bottom right button opens the View Navigator window containing the preview of
the whole page. The green rectangle in the preview represents the currently visible region of the
page in the view. You can move it and change the visible region of the view accordingly. Enter
new values of zoom and rotation to adjust preview. The Reset button sets zoom to 100.0% and
rotation to 0 degrees.

5.1.3 Universe Browser

When we talk about “the universe”, we mean the set of all existing objects — documents, pages,
graphic objects etc. The Universe browser window shows you the tree structure of the universe.
For each object, the name and type are displayed. On the left side of the name, there is an
expander arrow and icons which appear from time to time. The l#l icon indicates that the object
is part of the context (see Section 5.2 [The context|, page 39). The L&l icon indicates that the
particular document or page has been modified since the last save.

The left mouse button performs selection in the style similar as in Gimp: Shift + click adds to
selection, Ctrl + Click removes from selection, while a single click clears the current selection



Chapter 5: The Anatomy of the Graphical User Interface 33

and selects the clicked objects. But the selection is cleared in the current scope only — if you
click an object in a group, then all the other objects in that group are unselected but the rest
of the universe is unchanged.

[ | [ Universe browser, BEEa
Name Type 1—‘-
> Untitled 1 document
< (A ' Untitled 2 document
- Page 1 tlo
noname segment
noname bezier
¥ A ¥ page2 tlo
/ noname intersection
noname bezier
noname point
noname point |_
noname point ~|
| 7

Picture 32: The Universe browser window.

The selected objects are marked with a color. The program has two different selections — selection
of “namespace objects” (documents and pages) displayed in pink and selection of graphic objects
which is blue. The selections are orthogonal, hence changed independently. Also, the selections
in distinct groups and pages are independent.

The right mouse button opens the pop-up menu containing actions available from View’s menu
as well. In addition, there are the “Global undo” and “Global redo” menu items which operate

the global undo history (undo history actions performed on documents and pages, not on the
contents of any page).

5.1.4 The Undo History Window

The Undo history window can show the “local” undo history (of a page) or the “global” undo
history containing the actions not connected to the contents of any page. It shows the list of
all actions that have been done or undone. The undone actions are striked trough. After a new
action, all undone items are deleted.

The toolbar buttons have the following meaning;:
o [ undo the last not undone action in the list
o A jump to the selected undo item
o [»] redo the first undone action in the list

<[2]»]

B3] Giobal undo hist [FIEIED) B3] Undo history - Pa [FHEED)
The beginning of history. The beginning of history.
New file Selectftransform
New file Change selection
Open file Change stroke-color
Change selection Change control-1-x
Changagrd-yl
Change grd-yl

<2)>]

Picture 33: The global and local undo history windows.



34 The VRR User’s Manual

The number of items in undo history and the memory they consume are limited by user settings
Section 5.1.7 [Global Settings|, page 35). Therefore the first items of the list can be removed
occasionally.

Note: When creating a new graphic object, you might notice that each click causes a new undo
item to appear. That makes the “Step back” feature possible — it actually undoes the last partial
undo operation. When the object is created, all partial undo items are merged into one.

5.1.5 The Property Window

Each object, according to its type (segment, circle etc.), contains some specific properties, which
can be — in general — changed. The Property window allows you to view and change the values
of an object’s properties.

’ ey
~_Properties of bezier  [ENENEN

control-0-x mm | ¥
control-O-y m mm | ¥
weight0  [1.0000 Il
control-1-x m mm| ¥
control-1-y Wﬂ mm | ¥
weight-1  [1.0000 B
control-2-x m mm,*
control-2-y !m mm | ¥

weight2  [1.0000 B

stroke-cap  butt hd

stroke-join  miter I

stroke-width ]0.0000 ‘1 mm | ¥
stroke-color M
fill-color I

invisible r
name Incname
Add ... J Delete J Units ... I

J

Picture 34: The Property window.

The attempt to change some property values may fail for various reasons, mainly the geometric
dependencies. If you try to change the coordinates of the center point of a circle determined by
three points on its perimeter, it fails. In that case, the value remains unchanged. The value of
some properties is also limited according to their subtype. The subtype determines the meaning
of the property — length, angle, color etc.

Properties with dimensions are associated with a dimension unit. By setting the unit, you
modify the display value of the property, not the property itself (the internal value stays the
same). You can also create and use your own units (click on “Units ...” button to open the
Unit manager Section 5.1.8 [The Unit Manager|, page 37).

For some properties, there is a more specialized editor, like the color editor, text editor (see
Section 5.1.6 [The Text Editor|, page 35), filename editor etc. In that case, there is a button in
the property window that opens the editor.

You can also create, edit, and delete your own properties; that can be useful for making some
notes or in script processing. To add a property, press the “Add ...” button and fill in the
name (the key), type, subtype and value of this property. Note that the property key must be
unique. To delete some properties, select them by clicking their names in the Property window
(or unselect by clicking once more). Then press the “Delete” button. Note that not all properties
can be deleted; some of them are important for geometric and graphic features of the object.



Chapter 5: The Anatomy of the Graphical User Interface 35

But you can always delete the properties you created yourself. Even these property actions can
be undone and redone using the local undo/redo.

The context property window The Property window has two slightly different forms: the Context
one and the one connected to one object only. The context window can be opened via “Win-
dows/Property window”. It shows the properties of the current context object (see Section 5.2
[The context], page 39) or of the current selection, if there is any. When editing the selection
properties, only the properties common for all selected objects are displayed. All changes are
done to all selected objects. The property values of the first selected object are displayed.

5.1.6 The Text Editor

When creating a new text (or TEX text), you first specify a hanger — location of the text
reference point. Then the Text editor is opened. The Text and TEX text editors differ slightly,
but basically they are the same. The main text area shows the source text of the text object.
You can edit it directly, load it from a file or save it to a file (both in the character encoding set
in your locale). You can also edit the text with an external editor (like vim, emacs, etc). To run
the editor, make sure you have set its name (in the Settings window, see Section 5.1.7 [Global
Settings|, page 35) and press the “Edit with external editor . ..” button; when you have finished
editing, save all changes and finish your editor. VRR looks frozen while running the external
program as it is waiting for it to exit.

Note: This does not work properly with editors that fork their process at startup (gvim, for
example).

Any changes you have made to the source text take effect after pressing the “Refresh” button
or by pressing the Ctrl + Enter keyboard shortcut.

The “align”, “relative-shift” and “absolute-shift” properties control the position of the reference
point with regard to the bounding box of the resulting text. For description of their meaning
see Section 5.3.4.5 [Texts|, page 44.

In case of the ordinary text, there are additional widgets for choosing the font and font size. In
the font combo box, you can see the list of all installed fonts.

I~ [ text of tex-text ®]
Align-x:  refpoints-relative | = | Aligny: bbox-relative =
Rel-x: !0.5000 M param| ¥ | Rel-y: |0.5000 ‘;‘ param| ¥
Abs-x: lﬂt}m)ﬂ—ﬁ mm | ¥ | Abs-y: I0.0000 ‘;‘ mm |v
Text: . i a.with external editor ... IEd I Save ...

\noindent
\centerine{For which $a% does integral $\int_0"infty (1-e*-ax}er{-x}){1 \over x]\ dx§ tend?}
\centerline{Evaluate this expression for $a\in (-1, 1)8.}

Refresh‘

1

Picture 35: The Text editor window.

5.1.7 Global Settings

The Global settings window enables you to customize the behaviour of VRR. You can find it
under the “Windows/Global settings” menu command or the B icon. We now describe the
settings in detail.

e Snap tolerance (in pixels) — determines the snap tolerance used for snap (Section 3.6.1 [What
is snap? What is it good for?], page 18). It is the maximum allowed distance between the
original point and the snapped one.



36

The VRR User’s Manual

Grid x1, y1, x2, y2 — the vectors (x1,y;) and (x4, y,) define the View grid. All grid points
are their integer linear combinations. The default is a square grid, but you can set it to any
possible grid defined by two linearly independent vectors. If you set two dependent vectors,
one of them is ignored and a perpendicular vector of the same size as the other one is used
instead.

Ruler x-resolution, ruler y-resolution — the default horizontal and vertical resolution for
the rulers. They define the base section length in the rulers.

Panning: drag the image — determines whether to move the image or the view (using the
middle mouse button in the View drawing area). If set to true, you drag the image and
the mouse button stays pinned to a point position. Otherwise, you drag the view and the
image moves in the opposite way than the mouse cursor does.

Enable Fifi - turns on/off the VRR Fifi. When Fifi is turned on, the blue secondary cursor
is be displayed and indicates the snap position. See Section 3.6.2 [Fifi], page 19.

w|. -4 2 9 [%].1-4 -2 9 [ofb4 . 2. .0,
¥
8 ‘s ‘s
N
3 ‘5 ‘5
7 l? l?

;o 7.

Picture 36: Some of the possible grid settings: the default grid, a “triangular” grid, and a diamond grid.

Your favourite text editor — choose the editor you want to use for text editing (see Sec-
tion 5.1.6 [The Text Editor], page 35). You can omit the full path and write the program
name only.

Run the text editor in a terminal?

Your favourite WWW browser — choose the browser to view Help with. You can omit the
full path and write the program name only.

Run the browser in a terminal?

Your favourite terminal — in what terminal should the chosen external text editor and the
help browser eventually run?

Maximum volume of undo history (in KB)

Maximum items of undo history — the maximum number of undo items per page.

Important: The editor needs several undo items to enable the “Step back” feature. If you set
the maximum number of items to a very small number (less than five), the editor will not work

properly.

Maximum memory for cache — the settings of cache for geometrical computations.
Maximum items in cache

Minimum items in cache

There is no “Refresh” button. All changes take effect immediately or after pressing Enter (for
text entries and spin buttons). The settings are saved automatically when exiting VRR and
loaded during startup.



Chapter 5: The Anatomy of the Graphical User Interface 37

Global settings

rEditor settings !
Snap tolerance (in pixels) ].m ‘:‘
Grid x1 [00000 [ mm|~
Grid y1 Wﬂ mm |
Grid x2 [cooe [ mm|+
Grid y2 Wﬂ mm | ¥
Ruler x-resolution Wﬂ mm v
Ruler y-resolution Wﬂ mm | ¥
Panning: drag the image [

| Enable Fifi |1

rExtemal programs -

Your favourite text editor vim

Run the text editor in a terminal?

Your favourite WWW browser links

Run the browser in a terminal?

Your favourite terminal vt

[Advanced

Maximum volume of undo history (in KB) |1 :‘
Maximum items of undo history 100 :'
Maximum memory for cache 1024 :
Maximum items in cache 10000 ;‘
Minimum items in cache 10 '3_

Picture 37: The Settings window.

5.1.8 The Unit Manager
il

The Unit manager window shows the list of defined units and also allows you to edit them. The
window consists of three parts:

On the top, there is a edit box with list of unit quantities like length, angle or reference. Choose
the one you want to work with (view, create, delete, or edit). The list below will be refreshed —
only units of chosen quantity will be displayed.

The biggest part of the window is the list of displayed units. The unit’s name is the name
displayed in unit lists in property editors. The multiplier (against a certain unit) defines the
unit’s value. For example, if you want to create a unit for kilometers, set the multiplier to 1000
(against meters). The multiplier is then recomputed against an internal unit value.

The bottom part contains 4 buttons:
e New — adds a new unit. The unit name must be unique.

e Edit — allows you to change the values of an existing unit except for quantity. If you want
to change the quantity, delete the unit and recreate it again.

e Delete — deletes the selected unit. You cannot delete the default unit.
e Set as default — set the selected unit to be the default for the chosen quantity. The default

unit is displayed in property editors for properties for which you have not changed the unit
manually. It cannot be deleted.

5.1.9 The Plugin Manager
(]

The Plugin manager allows you to load or unload plugins. All you need to load a plugin is to
click the “Load . ..” button and choose its location in the file browser. In the table, all loaded
plugins and their functions are displayed.

Some plugins can be unloaded (for such, the “Unload” button is enabled). To unload the selected
plugin, press the “Unload” button.



38 The VRR User’s Manual

5.1.10 The Scheme console

All the editing actions accessible from GUI (and even some more) can be performed via a
command line. VRR has a text console which accepts commands in the Scheme programming
language. The available data types and functions are described in Chapter 6 [Scheme]|, page 46.

[+] ; Scheme console - 9EEY
> (define (walk-sel-go fn)
(let loop ((go (tlo-get-first-selected-go (get-
trans-tlo))))
(cond
((not go) *unspecified®)
(else
(fn go)
(loop (tlo-get-next-selected-go go))
NN

Picture 38: The Scheme console.

The console text area is composed of two parts — the active text buffer and the history. The
active buffer is a place in which you can edit a new command. In history, old commands and
VRR answers are disaplayed. The current buffer is displayed in bold letters while the history is
displayed in regular letters. The console supports all standard GTK text editing features (but
only the active buffer is editable). In addition there are these keystrokes:

Enter if the current cursor position is in the active buffer, the console tries to execute the
entered command. If there are missing closing parentheses in the entered command (the text in
the active buffer), missing-parenthesis-prompt is displayed (“... ”). Otherwise the command is
executed and together with VRR output becomes a part of history. The new command prompt
is displayed (“> ¢) and active buffer is empty. In both cases the cursor is moved at the end of
the active buffer.

Enter if the current cursor position is in the history, the console copies the old command (which
is near the cursor) at the end of active buffer. So, if you want to reuse a previous command,
move the cursor up to it and paste it by pressing Enter.

Shift + Enter in the active buffer just enters newline and does not try to execute anything.

Ctrl + S starts incremental search forward and Ctrl + R starts incremental search backward.
In incremental search, as you are typing, the newly entered letters are added to the sought text
and the cursor jumps to places where the sought text is found. By pressing Ctrl + S or Ctrl +
R repeatedly, you move the cursor to next occurences of the sought text.

BackSpace during incremental search moves to an old position or removes the last entered letter
from the sought text.

Each command corresponds to one undo history item (see Section 5.1.4 [The Undo History
Window], page 33) and is executed in a transaction of the active page.



Chapter 5: The Anatomy of the Graphical User Interface 39

5.1.11 The Clipboard

The Clipboard window is, in fact, a View (see Section 5.1.2 [The View], page 31). You can work
with it in the same way as in a View (create graphic objects, manipulate them, ...). The only
difference is that you are modifying the clipboard. But beware, editing the clipboard contents
together with copy, cut and paste operations can be a bit confusing. For example, if you want
to paste the clipboard contents in a page, only the selected objects will be pasted. If you copy
some objects into the clipboard, the current clipboard contents will be deleted.

5.2 The context

During your work with VRR, some objects or windows become implicitly significant from time
to time: the object you clicked last, the top-level window or the current selection. So, when
performing an action, you do not have to specify all the subjects explicitly. The collection of
these significant things is called the context. It consists of:

e the current selection
e the last clicked object
e the current group

e the current page

e the current window, if there is such (usually a view, which determines its page and the
page’s father document)

The selection has always the highest priority. If the selection is empty, the other objects are
used. Almost all actions, like keyboard shortcut commands, menu commands etc. operate with
the current context. For example, if you press Ctrl+Z, which means Undo, the last action is
undone in the context page.

The context objects are indicated with the [l icon. The icon can be found in the View and in
the Universe browser.

You might have noticed that the menus can be torn off. The torn-off menu is not connected
to any document or page, it works with the current context as well. You can watch the menu
items being disabled and enabled again as the context changes.

5.3 The mechanism of creating new graphic objects

Creating a new graphic object works similarly to a finite automaton: You set the starting state
(e.g. “Create a segment”) by clicking an icon the the View toolbar, and then choose the desired
arguments of the operation (in this case, two hangers), step by step. By pressing the BackSpace
key, you return one step back, by pressing Esc, you cancel the creation process and delete the
GO that is being created. Once you choose the desired argument (usually by clicking an object
with the left mouse button), in case of success the editor moves to another state and allows you
to choose another argument. In case of a failure (e.g. when creating a circumscribed circle of
three points and having chosen the first two points as equal) the editor reports an error and asks
you to choose the last argument again. The error can occur for various reasons: when trying
to create a circle circumscribed to three collinear points, or move a fully dependent object, for
example. When the creation process is finished, the editor returns to the starting state again so
that you can create another GO of the same type.

The GO creating state is global for the whole VRR. You can operate on one page at one time
(but you can work in any of the page’s Views interchangeably). Setting some other page as the
context page resets the process and returns to the starting state. Any action incompatible with
the current GO creating action, the process is cancelled and the editor returns to the starting
state, as well.



40 The VRR User’s Manual

Almost all other actions are incompatible with GO creating operations, like selection, menu
commands, ... The most important exception are the snap buttons — you can change snap
settings even during the creation of a new graphic object. Thus you can snap the first point of
an object to a hanger, the second one to the grid and the third one to a line, for example. See
Section 3.6.1 [What is snap? What is it good for?], page 18.

The interface for creating a new GO is contained in the view. Toolbar buttons switch between
editor states, by clicking the drawing area you position the points as arguments of the current
operation, select objects, move the transformation gadgets and thus transform objects, etc. The
argument required in the current state is described in the right part of the status bar.

The editor uses the undo history to enable the “Step back” feature and needs to make sure
that no other actions interfere with its own. That is the reason why almost all menu commands
interrupt the current operation. Moreover, the editor needs to have several undo items enabled
(in the Global settings, see Section 5.1.7 [Global Settings|, page 35). If you set the maximum
number of undo history items to a too small number (say, three), the “Step back” feature will
work in a very odd way.

The editor has the following kinds of states/modes: the Select/Transform mode, the Santiago’s
transform mode, the Anchor rehang mode and the go creating modes. We now describe these
modes in detail:

5.3.1 The Select/Transform mode
]

In the Select/Transform mode, you can select objects and transform the selection. By Shift +
click you add an object to selection and by Ctrl + click you remove it from selection. Clicking an
object without any of Shift or Ctrl pressed clears the selection and makes it the only selected
object in the page. The keyboard shortcuts work similarly for rectangular selection. Instead of
plain clicking, press the left mouse button, by dragging it define a rectangular region, and release.
This modifies the selection with all objects inside the region. In addition, the “Edit/Select all”
command (Ctrl + A) selects all objects in the page and the “Edit/Clear selection” command
(Shift + Ctrl + A) clears the selection. You can also clear the selection by clicking the drawing
area far enough from any object.

You can see a red rectangle bounding all selected objects. Also, the selected objects are drawn in
red instead of their real color. This helps you to recognize which objects are selected and which
are not. On the red selection bounding box, there are small squares of various colors. These
are the transformation gadgets, each gadget stands for a certain transformation. While holding
the Shift key, you can see different transformation gadgets. The meaning of the gadgets is
described in Section 3.4.1 [Transforming using the Select/Transform tool], page 11.

In case that the bounding box of selected objects is (almost) non two-dimensional, only some
gadgets are shown and only some transformations are applicable. These are move, scale and
rotate for bounding boxes which are almost horizontal and vertical lines, and move for point
bounding boxes.

5.3.2 The Santiago’s transform mode

The Santiago’s transform tool enables you to do all affine transformations in a special way.
Having the Shift key pressed, click to position the three transformation crosses. The first
click places the first cross, the second one places the second cross etc. By clicking an already
positioned first or third cross, you remove it. By clicking the second cross, you toggle it between
the states blue, red, removed. If a cross with lower number is removed, the crosses with higher
number are disabled (gray).



Chapter 5: The Anatomy of the Graphical User Interface 41

Now drag a cross to transform. For all crosses, the transformation is computed in such a way
that the point from the original cross position becomes the point at the new cross position.

The first (magenta) cross is the gadget for move.

The second (blue/red) cross is the gadget for resize/rotate, which are all possible linear trans-
formations (may be combined together). The first cross is the fixed point.

The third (green) cross does the skew. The former crosses (and the line connecting them) are
the fixed points. This enables you to do all affine transformations.

Note: The transformation in the Santiago’s tool is computed according to the relative positions
of the three crosses among one another. It does in no way depend on their absolute position in
the image (or with regard to the selection bounding box), which might seem somewhat surprising
at first.

5.3.3 Anchor Rehang mode
[

This mode allows you to rehang anchors (defined in Section 4.1 [Anchors and hangers], page 27).
First, choose the owner object of the anchor by selecting it. You can see its anchors appear as
green triangles, and all hangers as blue triangles. By clicking any of them and clicking the
destination hanger, you reposition the appropriate anchor and modify the object’s geometric
dependencies accordingly.

5.3.4 GO Creating Modes

Almost all editor icons represent states for creating new GOs. In the left toolbar, there are some
icons which represent icon groups (Points and decorations, Bézier curves, etc). Click the group
icon to expand all the icons contained in the group into the right toolbar.

In the descriptions of the GO creating modes, we also give a list of type, subtype, hanger and
anchor terms (canonical names). You can ignore them unless you are interested in the Scheme;
in that case, they give you useful information about the GOs.

5.3.4.1 Points and decorations
° Point
o |2¢o| Decoration point

The Decoration point represents a point with a certain shape. The shape is defined by the
number of vertices — zero means a circle, two a segment, three up to one hundred a polygon and
more than one hundred a circle again. The size of the decoration point is determined by the
value of the “radius” property.

Note: The decorator point is resistant to transformations. This is very useful for decorating
many point which should look the same, for example, vertices of a graph.

° Arrow

The arrow is a transformation-resistant decoration, too. It should be positioned on a curve and
it adjusts its direction according to the curve’s tangent in the snap position. Its appearance can
be adjusted by changing the property values (in the Property editor).

Each arrow has four important points - the front point (where the hanger is located), two side
points and the back point. By setting up the “arrow-alignment” property, you can specify how
the arrow’s rotation should be computed. We can align the arrow to the derivation in the front
point or force the back point to be in the intersection of the curve and the side points’ center
line. The second possiblity is useful especially for a very rounded curve. The final rotation can
be adjusted with “rotation”.



42 The VRR User’s Manual

The front shape of the arrow is controlled by the “arrow-angle” property (half of the angle
between the front point and side points), “arrow-length” (distance between that points), “arrow-
front” (shape type) and “front-curvature”. The property “back-distance” determines the angle
between the back point and side points and the “arrow-back” property determines the back
shape of the arrow.

e || Intersection point

To create an intersection point, choose two curves whose intersection you want to create. If
do not intersect or cease intersecting after a transformation, the intersection point will position
itself on a somehow chosen position (the last well-defined intersection position, for example).

Type: intersection
Subtype: intersection
Anchors: curve-1, curve-2
Hanger: center

e [ n-gon

The n-gon generator creates a regular n-gon with the given number of apices (a closed path of
segments). When you switch to this mode, an entry appears in the editor status bar and lets
you enter the desired number of apices. Then you choose the center point and the position of
one apex.

5.3.4.2 Bézier curves

Bézier curves used in VRR are rational Bézier curves. For each control point of the curve a
rational weight is defined (1, by default) which influences the shape of the curve as well. The
weights are the object’s properties and can be modified in the Property editor.

e L'l Segment
Creates a segment defined by the start point and the end point.

Type term: segment

Subtype term: segment
Hanger term: curve, start, end
Anchor term: start, end

e | Quadratic Bézier curve
Creates a quadratic Bézier curve defined by three control points.

Type: bezier

Subtype: quadratic-bezier

Hangers: curve, controlpoint-1, controlpoint-3
Anchors: controlpoint-1, controlpoint-2, controlpoint-3

e L] Cubic Bézier curve
Creates a cubic Bézier curve defined by three control points.

Type: bezier Subtype: cubic-bezier Hangers: curve, controlpoint-1, controlpoint-4 Anchors:
controlpoint-1, controlpoint-2, controlpoint-3, controlpoint-4

5.3.4.3 Circular arcs

In fact, circles and circular arcs are ellipses and elliptic arcs. When being created, they are set
to be the circular special cases; but, they do not differ from elliptic objects in anything more
significant then just a few property values. Therefore, circles have two radii and other properties
which might seem useless.



Chapter 5: The Anatomy of the Graphical User Interface 43

See Section 5.3.4.4 [Elliptic arcs]|, page 43 for full description.

e | | Circular arc defined by three points on its perimeter

Creates a circular arc defined by three points on its perimeter. The three points must not be
collinear.

e L1 Circular arc defined by the center point and radius

Creates a circular arc defined by the center point and radius. The radius, the end point param-
eters, etc. can be modified in the Property editor.

° Circle defined by three points on its perimeter

Creates a circle defined by three points on its perimeter. The three points must not be collinear.
e |4 Circle by the center point and a point

Creates a circle defined by the center point and a point on its perimeter.

e | Circle by the center point and radius

Creates a circle defined by the center point and radius. The radius can be modified in the
Property editor.

5.3.4.4 Elliptic arcs

The ellipse is just a special case of an elliptic arc; it can be changed into an elliptic arc just
by changing the “conic” property. The “conic” property is quite important and very useful. It
controls the type of the arc. The available values depend on the object type. The values for all
types are:

e start-entire — a closed arc

e start-dif — an arc defined by the “start” parameter with “dif” defining the arc length

The available values for arcs with at least one point on the perimeter:
e point-entire — a closed arc

e point-dif — an arc starting from the start point with “dif” defining the arc length

The available values for arcs with three points on the perimeter:
e ccw — an arc connecting the three given points counterclockwise
e cw — an arc connecting the three given points clockwise

e smaller — the smaller one of the two arcs connecting the start point and the end point and
having the third point on the perimeter of the whole circle/ellipse

e bigger — the larger one (dtto)
e middle — the arc connecting the start point and the end point via the center point

e opposite — the opposite to “middle”
° The smallest ellipse defined by three points

Creates the smallest (in area) ellipse determined by three points on its perimeter. The points
must not be collinear.

Type: elliptic-arc

Subtype: ellipse-by-3-points-smallest

Hangers: curve, start, end, center

Anchors: point-1, point-2, point-3

e [.)| Ellipse defined by three points, rotation and eccentricity

Creates an ellipse defined by three points on its perimeter, the rotation and eccentricity. The
points must not be collinear. The rotation and eccentricity properties can be edited in the
Property editor.



44 The VRR User’s Manual

Type: elliptic-arc

Subtype: ellipse-by-3-points-rotation-eccentricity
Hangers: curve, start, end, center

Anchors: point-1, point-2, point-3

e L) Ellipse defined by two foci and a point

Creates an ellipse defined by the foci and a point on its perimeter. The two foci points must
not be equal.

Type: elliptic-arc

Subtype: ellipse-by-2-foci-point

Hangers: curve, start, end, center

Anchors: focus-1, focus-2, point

e [ Ellipse defined by the center point, a point and eccentricity

Creates an ellipse defined by the center point, a point on its perimeter and eccentricity. The
eccentricity property can be edited in the Property editor.

Type: elliptic-arc

Subtype: ellipse-by-center-point-rotation-eccentricity

Hangers: curve, start, end, center

Anchors: center, point

e L) Ellipse defined by the center point and radii

Creates an ellipse defined by the center point and the two radii. The radii can be edited in the
Property editor.

Type: elliptic-arc

Subtype: ellipse-by-center-2-radii-rotation

Hangers: curve, start, end, center

Anchors: center

e L) Elliptic arc defined by the center point and radii

Creates an elliptic arc defined by the center point and the two radii. The radii can be edited in
the Property editor.

5.3.4.5 Texts

The position of the text objects is defined by a reference point (hanger) and several properties.
The “align” property determines the reference point position with regard to the text bounding
box. The “relative-shift” and “absolute-shift” properties determine additional adjustments of
the position.

Each text label has several special points useful for aligning. The left reference point is usually a
point on text’s baseline near the left edge of the leftmost letter and is taken from the used font.
We also define the right reference point which is exactly on the right edge of text’s bounding
box in the current VRR’s version.

First, the label is aligned according to values of “align” and “relative-shift” properties. The
result is then translated by “absolute-shift” and transformed with a stored linear transformation
(rotation, scale or skew) around the hanger point.

The possible values of “align-x” (the horizontal align) are:

e refpoints-relative — The hanger is placed horizontally between the two reference points with
the x coordinate of “relative-shift” as the parameter.



Chapter 5: The Anatomy of the Graphical User Interface 45

o refpoints-left — The parameter is replaced with 0.
e refpoints-center — The parameter is replaced with 0.5.
o refpoints-right — The parameter is replaced with 1.

e bbox-relative — The hanger is placed horizontally between the edges of the text’s bounding
box.

e bbox-left — The parameter is replaced with 0.
e bbox-center — The parameter is replaced with 0.5.

e bbox-right — The parameter is replaced with 1.

The possible values of “align-y” (the vertical align) are:

e Dbaseline — The hanger is placed vertically on the text’s baseline.

bbox-relative — The hanger is placed vertically between edges of the text’s bounding box.

bbox-bottom — The parameter is replaced with 0.
e bbox-center — The parameter is replaced with 0.5.

e bbox-top — The parameter is replaced with 1.

o [N TEX text
Creates the TEX text object determined by the chosen reference point. A text editor is then

opened on the created object (see Section 5.1.6 [The Text Editor], page 35 for further details
and the window description).

Type: tex-text
Subtype: tex-text
Anchor: point
Hangers:

° Text

Creates the text object determined by the chosen reference point. A text editor is then opened
on the created object (see Section 5.1.6 [The Text Editor], page 35 for further details and the
window description).

Please note that the text objects do not support newlines which are drawn as spaces; if you need
to create text labels containing several lines of a text, use a TEX-text object instead.

Type: text

Subtype: text

Anchor: point

Hangers:

5.3.5 Snap settings

The [*] [#1 [2] icons control the editor snap settings. They are described in Section 3.6.1
[What is snap? What is it good for?], page 18.



46 The VRR User’s Manual

6 Scheme

The guile-vrr interface and Scheme console enable you to control the program by Scheme
commands. Except for GUI and image viewing, you can access all the program functionality,
such as image creating, loading, editing, saving, exporting or importing.

[ Scheme console
> (define (walk-sel-go fn)
(let loop ((go (tlo-get-first-selected-go (get-
trans-tlo))))
(cond
{(not go) *unspecified®)
(else
(fn go)
(loop (tlo-pget-next-selected-go go))
NN

Picture 39: The Scheme console.

This book shows you only some basic examples of Scheme code but does not teach you Scheme
systematically. To learn about the Scheme programming language, you might want to try some
of the following:

C. Candolin: Scheme Tutorial — a basic tutorial for beginners. It is available online at
http://www.cs.hut.fi/Studies/T-93.210/schemetutorial/schemetutorial.html.

H. Abelson, G. J. Sussman, J. Sussman: Structure and Interpretation of Computer Programs,
MIT Press; available at http://mitpress.mit.edu/sicp/full-text/book/book.html).

Revised Report on the Algorithmic Language Scheme — a defining description of the program-
ming language Scheme (http://www.schemers.org/Documents/Standards/R5RS/HTML/).

6.1 VRR Scheme data types

VRR proxy is a Scheme object used for representing VRR entities. Proxies are compared using
the eq? command: if pl and p2 are proxies of the same entity, then (eq? pl p2) returns true.
There are four kinds of proxies: obj, go, anchor, and hanger, and they are associated with the
appropriate VRR entities of the same name. obj proxies are classified by their type. There are
two types of them: document and page. go proxies can be classified by their type and subtype.

6.2 VRR Scheme functions

In the following sections, there will be many function descriptions. On the first line of each
description, there is a ‘function prototype’ — a function name and formal arguments enclosed in
parentheses. If some part of function name is TYPE, SUBTYPE, ANCHOR or HANGER, then there is a
set of functions which can be obtained by replacing the string with the appropriate terms (for
example, make-SUBTYPE is a shorthand for function names make-segment, make-quadratic-
bezier and so on).

On the second line, there is a ‘type signature’. For each argument, there is a permitted type (the
name of the type or type signature enclosed in parentheses in case of a functional argument).


http://www.cs.hut.fi/Studies/T-93.210/schemetutorial/schemetutorial.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://www.schemers.org/Documents/Standards/R5RS/HTML/

Chapter 6: Scheme A7

The ‘+’ character is used to union two type sets. Valid values are Scheme type names, VRR
type names (proxy, o, obj, go, anchor, hanger and terms of types and subtypes), ‘any’ (means
anything), ‘false’ (#f) and ‘specific’ (for specific permitted values, which depend on the function).
String ‘unspecified’ is valid only as a return value (in case that the return value has no meaning).
Characters ‘[" and ‘]” are used to specify optional arguments (and their types), ‘...” can be used

to specify that the structure of arguments is described in function description.

6.3 Functions for VRR types

(proxy? obj [kind [type [stl]]1)

any [symbol [symbol [symbol]]] — boolean

If no additional arguments are given, is returns whether obj is a VRR proxy. Otherwise it also
checks the given type information — whether obj kind is kind, obj type is type and obj subtype
is st.

(proxy-kind proxy)
proxy — symbol
Returns the kind of proxy.

(proxy-type proxy)
proxy — symbol + false
Returns the type of proxy.

(proxy-subtype proxy)
proxy — symbol + false
Returns the subtype of proxy.

6.4 Creation of objects

There are several definitions of functions for object creation (called also constructors). All return
a proxy for the created object. They are usually named by a pattern make-SUBTYPE, they need
different arguments, so they are described separately. obj constructors must be called in a
meta-transaction and are n-parent-less, go constructors must be called in a transaction
and their g-parent is g-root of the page of the current transaction.

(make-document)
—  document
A constructor for obj document.

(make-page)
—  page
A constructor for obj page.

(make-common-document name)

string — document

A modified constructor for obj document. The newly created document is named by name and
connected under the universe.

(make-common-page name doc)

string document —  page

A modified constructor for obj page. The newly created page is named by name and connected
under the doc.

(coords x y)
real real — hanger



48 The VRR User’s Manual

A constructor for a free hanger (also known as a mouse-click). The created hanger coordinates
are (x, y).

(coords-c p)

compler — hanger

A constructor for a free hanger (also known as a mouse-click). The created hanger coordinates
are ((real-part p), (imag-part p)).

(make-point h)
hanger — go
A point constructor. The created GO’s point anchor is hung on the h hanger.

(make-segment hl h2)

hanger hanger — go

A segment constructor. The created GO’s start anchor is hung on the hl hanger, the end
anchor is hung on the h2 hanger.

(make-ellipse-by-center-2-radii-rotation ¢ rl r2 rot)

hanger real real real — go

A constructor for the appropriate go. The created GO’s center anchor is hung on the ¢ hanger.
r1 is used as the major radius of the ellipse. r2 is used as the minor radius of the ellipse. Radii
must be positive. rot (must be between 0 and 27) is used as the rotation the of ellipse, where
zero rotation means that the major axis is horizontal.

(make-ellipse-by-2-foci-point £f1 £2 p)

hanger hanger hanger — go

A constructor for the appropriate go. The created GO’s focus-1 anchor is hung on hanger £1,
anchor focus-2 is hung on hanger £2, anchor point (representing any point on the ellipse) is
hung on hanger p.

(make-ellipse-by-3-points-smallest pl p2 p3)

hanger hanger hanger — go

A constructor for the appropriate go. The created GO’s anchors point-1, point-2 and point-3
are hung on hangers p1, p2 and p3, respectively. The created ellipse is the smallest (in area)
ellipse containing the three points represented by the anchors.

(make-ellipse-by-3-points-rotation-eccentricity pl p2 p3 rot ecc)

hanger hanger hanger real real — go

A constructor for the appropriate go. The created GO’s anchors point-1, point-2 and point-3
are hung on hangers p1, p2 and p3, respectively. rot (must be between 0 and 27) is used as the
rotation of the ellipse, where zero rotation means that the major axis is horizontal. ecc (must
be between 0 and 1) is used as the eccentricity of the ellipse.

(make-ellipse-by-center-point-rotation-eccentricity c p rot ecc)

hanger hanger real real — go

A constructor for the appropriate go. The created GO’s anchor center is hung on the ¢ hanger,
the point anchor is hung on the p hanger (representing any point on the ellipse). rot (must
be between 0 and 27) is used as the rotation of the ellipse, where zero rotation means that the
major axis is horizontal. ecc (must be between 0 and 1) is used as the eccentricity of the ellipse.

(make-elarc-by-center-2-radii-rotation-2-angles c rl r2 rot al a2 style)

hanger real real real real real symbol — go

An alternative constructor for go ellipse-by-center-2-radii-rotation, modified to creation
of arcs. The arguments share the semantics with the function make-ellipse-by-center-2-
radii-rotation and the additional arguments al, a2 and style are the arc information (see
Section 5.3.4.4 [Elliptic arcs], page 43).



Chapter 6: Scheme 49

(make-elarc-by-3-points-smallest pl p2 p3 style)

hanger hanger hanger symbol — go

An alternative constructor for go ellipse-by-3-points-smallest, modified to creation of arcs.
The arguments share the semantics with function make-ellipse-by-3-points-smallest and
the additional argument style is arc information (See Section 5.3.4.4 [Elliptic arcs], page 43).

(make-quadratic-bezier pl p2 p3)

hanger hanger hanger — go

A constructor for the appropriate go. The created GO’s anchors controlpoint-1,
controlpoint-2 and controlpoint-3 are hung on hangers pl, p2 and p3, respectively. The
created bezier is non-rational, i.e. all weights are set to 1.

(make-quadratic-rational-bezier pl wl p2 w2 p3 w3)

hanger real hanger real hanger real — go

An alternative go constructor for quadratic-bezier, the created bezier is rational. The ar-
guments share the semantics with function make-quadratic-bezier, the additional arguments
are weights of the control points.

(make-cubic-bezier pl p2 p3 p4)

hanger hanger hanger hanger — go

A constructor for the appropriate go. The created GO’s anchors controlpoint-1,
controlpoint-2, controlpoint-3 and controlpoint-4 are hung on hangers pl, p2, p3 and
p4, respectively. The created bezier is non-rational, i.e. all weights are set to 1.

(make-cubic-rational-bezier pl wl p2 w2 p3 w3 p4 w4)

hanger real hanger real hanger real hanger real — go

An alternative go constructor for cubic-bezier, the created bezier is rational. The arguments
share the semantics with the function make-cubic-bezier, the additional arguments are weights
of the control points.

(make-tex-text h str)

hanger string — go

A constructor for the appropriate go. The created GO’s anchor point is hung on hanger h, str
is used as the TEX source text.

(make-text h str font-family font-style font-size)

hanger string string string real — go

A constructor for the appropriate go. The created GO’s anchor point is hung on hanger h. str
is used as the text source. font-family is the desired font name. font-style is the variant
(for example, "regular" or "bold"). font-size is the size of the font in millimeters.

(make-parametric-point go p)

go real — go

A constructor for the appropriate go. The created GO’s anchor curve is hung on curve hanger
of go, p is used as the position parameter on that curve.

(make-parametric-point-on-hanger h p)

hanger real — go

Alternative constructor for go parametric-point. The created GO’s anchor curve is hung on
hanger h (which must be curve hanger), p is used as position on that curve.

(make-intersection gl g2 p)
go go real — go
A constructor for the appropriate go. The created GO’s anchors curve-1 and curve-2 are hung



50 The VRR User’s Manual

on curve hangers of g2 and g2, respectively. If there are more intersections of that curves, the
one closest to the p position on the first curve is used.

(make-intersection-on-hanger hl h2 p)

hanger hanger real — go

An alternative constructor for go parametric-point. The created GO’s anchors curve-1 and
curve-2 are hung on hangers hl and h2 (which must be curve hangers), respectively. If there
are more intersections of that curves, the one closest to the p position on the first curve is used.

(make-decorator-point h n radius rot)

hanger natural real real —

A constructor for the appropriate go. The created GO’s anchor decorator-point is hung on
hanger h. n, radius and rot are used as the number of vertices, radius and rotation, respectively.

(make-decorator-arrow g p arrow-length rot)

go real real real —

A constructor for the appropriate go. The created GO’s anchor curve is hung on curve hanger
of go. p is used as the position parameter on that curve. arrow-length and rot are used as
the arrow length and rotation, respectively. The rotation is interpreted as the deviation from
the tangent of the curve.

(make-decorator-arrow-on-hanger h p arrow-length rot)

hanger real real real —

An alternative constructor for go decorator-arrow. The created GO’s anchor curve is hung
on hanger h (which must be a curve hanger). p is used as the position parameter on that curve.
arrow-length and rot are used as the arrow length and rotation, respectively. The rotation is
interpreted as the deviation from the tangent of the curve.

(make-group)
— gO
A constructor for the appropriate go.

(make-path)

— gO
A constructor for the appropriate go.

For some functions, there are aliases (shortened versions):

Function alias
make-ellipse/c2rr
make-ellipse/2fp
make-ellipse/3ps
make-ellipse/3pre
make-ellipse/cpres
make-elarc/c2rr2a
make-elarc/3ps
make-bezier /2
make-bezier /2r
make-bezier/3
make-bezier /3r

Function full name
make-ellipse-by-center-2-radii-rotation
make-ellipse-by-2-foci-point
make-ellipse-by-3-points-smallest
make-ellipse-by-3-points-rotation-eccentricity
make-ellipse-by-center-point-rotation-eccentricity
make-elarc-by-center-2-radii-rotation-2-angles
make-elarc-by-3-points-smallest
make-quadratic-bezier
make-quadratic-rational-bezier
make-cubic-bezier

make-cubic-rational-bezier



Chapter 6: Scheme 51

6.5 The namespace hierarchy and functions
The namespace hierarchy (n-hierarchy) is a structure of pages and documents in the entire VRR.

The N-hierarchy is an ordering over objects of the obj kind. This ordering can be also viewed
as a set of rooted trees (where nodes are objects of obj kind and the root of the tree is the
maximum of all nodes in that tree).

One of these trees is more important than others. It is the tree with the object universe as the
root. This tree represents the accessible objects, other trees are just temporarily detached (or
awaiting for attaching). So the n-hierarchy can be often viewed as one tree.

Functions for manipulating with this hierarchy are usually named with n- prefix.

Comparisions
These functions do the comparison of n-objects in the n-hierarchy. The root is the maximum.

(n<=7 o1 x2)
obj obj — boolean

(n>=7 o1 x2)
obj obj — boolean

(n<? o1 x2)
obj obj — boolean

(n>? o1 x2)
obj obj — boolean

Direct movement

These functions return the appropriate n-neighbours of given a object. Being a sibling is con-
sidered to be a reflexive relation.

(n-parent o1)
obj — obj + false

(n-first-child ol)
obj — obj + false

(n-last-child o1)
obj — obj + false

(n-first-sib ol)
obj — obj

(n-last-sib o1)
obj — obj

(n-next-sib ol)
obj — obj + false

(n-prev-sib ol)
obj — obj + false



52 The VRR User’s Manual

The rest

(n-leaf? x)

any — boolean

Returns whether the object x is an n-leaf. An n-leaf is a member of the n-hierarchy which cannot
have children (not just an n-object without n-children), i.e. an object of the page type.

(n-children o1)
obj — list
Returns the list of all n-children of o1. In an unspecified order.

(n-ancestors ol)

obj — list

Returns the list of all n-ancestors of o1 (i.e. objects that are n-greater than o1). In descending
n-order.

(n-descendants ol)

obj — list

Returns the list of all n-descendants of o1 (i.e. objects that are n-lesser than o1). It is ordered
like the pre-order deep-first tree walk, so comparable objects are in descending n-order.

(n-leaves o1)
obj — list
Returns the list of all n-leaves that are n-lesser than o1. In an unspecified order.

(n-set-parent! ol 02)

obj obj + false — wunspecified

Sets 02 as the new n-parent of ol. Use false for no parent. This must be called in a meta-
transaction.

6.6 The group hierarchy and functions

The group hierarchy (g-hierarchy) is a structure of GOs in one page. If a GO is group, then its
members are its g-children.

The G-hierarchy is an ordering over objects of the go kind in one page. This ordering can be
also viewed as a rooted tree (where nodes are objects of the go kind and the root the of tree is
the maximum of all nodes in that tree), so it is a join-semi-lattice.

Comparisions

These functions do the comparison of g-objects in the g-hierarchy. The root is the maximum.

(g<=7 x1 x2)
go go — boolean

(g>=7 x1 x2)
go go — boolean

(g<? x1 x2)
go go — boolean

(g>7 x1 x2)
go go — boolean



Chapter 6: Scheme 53

Direct movement

These functions return the appropriate g-neighbours of a given object. Being a sibling is con-
sidered to be a reflexive relation.

(g-root x1)
go — go

(g-parent x1)
go — go + false

(g-first-child x1)
go — go + false

(g-last-child x1)
go — go + false

(g-first-sib go)
go — go

(g-last-sib go)
go — go

(g-next-sib go)
go — go + false

(g-prev-sib go)
go — go + false

The rest

(g-leaf? x)

any — boolean

Returns whether the object x is a g-leaf. A g-leaf is member of the g-hierarchy which cannot
have children (not just a g-object without g-children), i.e. a GO which is not of the group type.

(g-children x1)
go — list
Returns the list of all g-children of x1. In unspecified order.

(g-ancestors x1)

go — list

Returns the list of all g-ancestors of x1 (i.e. objects that are g-greater than x1). In descending
g-order.

(g-descendants x1)

go — list

Returns the list of all g-descendants of x1 (i.e. objects that are g-lesser than x1). It is ordered
like the pre-order deep-first tree walk, so comparable objects are in descending g-order.

(g-leaves x1)
go — list
Returns the list of all g-leaves that are g-lesser than x1. In unspecified order.

(g-set-parent! go grp)
go group — unspecified
Sets grp as the new g-parent of go. It must be called in an appropriate transaction.



54 The VRR User’s Manual

Because g-order and z-order is not completely independent, setting the g-parent also affects the
z-order. This function tries to minimize the change. The next four functions allow a better
control of z-change during the setting of a g-parent:

(g-set-parent/before go grp g2)

go group go — unspecified

Like g-set-parent!, but go will be just before g2 in the z-order (g2 must be also a child of
gTp).

(g-set-parent/after go grp g2)
go group go — unspecified
Like g-set-parent!, but go will be just after g2 in the z-order (g2 must be also a child of grp).

(g-set-parent/top go grp)
go group go — unspecified
Like g-set-parent!, but go will be the minimal possible in the z-order.

(g-set-parent/bottom go grp)
go group go — unspecified
Like g-set-parent!, but go will be the maximal possible in the z-order.

6.7 The dependency hierarchy and functions

The dependency hierarchy (d-hierarchy) is another structure of GOs in one page. If a GO1’s
anchor hangs on G02’s hanger, then GO1 is d-smaller than G02 and GO1 is a d-child of G02.

The d-hierarchy is an ordering over objects of the go kind in one page. This ordering can be
also viewed as a directed acyclic graph (where nodes are objects of the go type).

(d-parent go id)
go symbol — go

Returns the go’s parent which is accessible through the anchor named id.

(d-children go id)
go symbol — list

Returns the subset of go’s children which are accessible through the hanger named id.

(d-all-parents go)
go — list
Returns all parents of go.

(d-all-children go)
go — list
Returns all children of go.

(d-set-parent! gl k1 g2 k2)

go symbol go symbol — unspecified

Rehangs g1’s anchor named k1 on g2’s hanger named k2, so g2 becomes a parent of gl. Must
be called in an appropriate transaction.



Chapter 6: Scheme 55

6.8 Anchor-hanger binding functions

Because functions from the d-hierarchy are sometimes awkward to use, there is another set of
functions which can be used to obtain similar results. Most of the consequent functions are clear
if you know that:

The connection between GOs, hangers and anchors looks like this:
gol — hanger — anchor — go2,

a go is joined to a set of hangers (each identified with a term),

a go is joined to a set of anchors (each identified with a term),

a hanger is joined to exactly one go and set of anchors (without identification, ordered
arbitrarily)

an anchor is joined to exactly one go and exactly one hanger,

anchor siblings are anchors hanging on the same hanger.

(go-hanger g id)
go symbol — hanger

(go-hangers g)
go — list

(go-anchor g id)
go symbol — anchor

(go-anchors g)
go — list

(anchor-first-sib a)
anchor — anchor

(anchor-last-sib a)
anchor — anchor

(anchor-next-sib a)
anchor — anchor

(anchor-prev-sib a)
anchor — anchor

(anchor-hanger a)
anchor — hanger

(anchor-go a)
anchor — go

(hanger-first-anchor h)
hanger — anchor

(hanger-last-anchor h)
hanger — anchor

(hanger-anchors h)
hanger —  list

(hanger-go h)
hanger — go



56 The VRR User’s Manual

(h-HANGER g)
go — hanger

Returns the appropriate hanger of GO g. It is a shorthand for calling go-hanger. For example,
(h-start go) is equivalent to (go-hanger go ’start).

(a—-ANCHOR g)
go — anchor

Returns the appropriate anchor of GO g. It is a shorthand for calling go-anchor. For example,
(a-start go) is equivalent to (go-anchor go ’start).

(i-HANGER g)
go — hanger

Returns the hanger on which the appropriate anchor of GO g is hanging. It is a shorthand for
calling go-anchor and anchor-hanger. For example, (i-start go) is equivalent to (anchor-
hanger (go-anchor go ’start)). i- means input.

(anchor-set-hanger! a h)

anchor hanger — unspecified

Changes the anchor a to hang on hanger h. This function must be called in an appropriate
transaction.

(set-i-ANCHOR! g h)
go hanger — unspecified

Changes the appropriate anchor of GO g to hang on hanger h. It is a shorthand for call-
ing go-anchor and anchor-set-hanger!. For example, (set-i-start! go h) is equivalent
to (anchor-set-hanger! (go-anchor go ’start) h). i- means input. The function must be
called in an appropriate transaction.

(anchor-term a)
anchor —  symbol
Returns the term for anchor a (identifying that anchor in the corresponding go).

(hanger-term h)
hanger —  symbol
Returns the term for hanger h (identifying that hanger in the corresponding go).

6.9 Inter-hierarchy movement

(go-superior-page g)
go — page
Returns the page to which GO g belongs.

(page-g-root p)
page —  group
Returns the root of the g-hierarchy in page p.

6.10 Z-order functions

The z-order is an ordering of GOs in one page which represents the depth in which the GOs are
situated. So, if GO1 is in front of GO2, then GO1 is z-lesser than GO2.



Chapter 6: Scheme

Comparisions

(z<=7 x1 x2)
go go — boolean

(z>=7 x1 x2)
go go — boolean

(z<? x1 x2)
go go — boolean

(z>7 x1 x2)
go go — boolean

Reordering

(z-move-top! go)
go — boolean

57

Moves the go on the top in its current group. Returns whether any real movement happened.

(z-move-up! go)
go — boolean

Moves the go one step up in its current group. Returns whether any real movement happened.

(z-move-down! go)

go — boolean

Moves the go one step down in its current group. Returns whether any real movement happened.

(z-move-bottom! go)

go — boolean

Moves the go to the bottom in its current group. Returns whether any real movement happened.

6.11 Selection functions

Information

(selected? os)
go — unspecified

Returns weather the given GO is selected.

(selected-objs)
obj — list

Returns the list of all selected objects of the obj kind.

(selected-g-children g)

go — list

Returns the list of all selected g-children of g.

(selected-g-descendants g)

go — list

Returns the list of all selected g-descendants of g. The list is ordered like a pre-order deep-first

tree walk, so comparable objects are in descending g-order.



58 The VRR User’s Manual

Modification

(select ol ...)
go ... — unspecified
Selects the GOs given as arguments. The function must be called in an appropriate transaction.

(unselect ol ...)

go ... — unspecified

Unselects the GOs given as arguments. The function must be called in an appropriate transac-
tion.

(select-g-children g)
go — unspecified
Unselects g-children of given GO. The function must be called in an appropriate transaction.

(unselect-g-children g)
go — unspecified
Selects g-children of given GO. The function must be called in an appropriate transaction.

(unselect-all)

— unspecified

Unselects all GOs in the page specified by the current transaction. The function must be called
in an appropriate transaction.

6.12 Transformational functions

Functions in this section are used to apply various transformations on selected objects. These
functions accept a group argument and transformations are only applied to selected g-children
of the chosen group (because to their descendants the application is implicit - transforming a
group means transforming all its children).

The second part of this section (functions with the —active suffix) is analogic to first part, but
the group argument is missing, because it is taken from the active group (the group of the active
view), as returned by (active-group). Because this concept exists only with the GUI, these
functions are not accessible in the command-line variant of VRR.

General transformations

(move-selected grp x y)
group real real — unspecified

Moves the appropriate GOs by x in the X axis and y in the Y axis.

(rotate-selected grp cx cy angle)
group real real real — unspecified

Rotates the appropriate GOs by the angle angle. The center of the rotation is <cx, cy>.

(scale-selected grp cx cy sx sy)
group real real real real — unspecified

Scales the appropriate GOs by sx in the X axis and sy in the Y axis. The center of the scale is
<cx, cy>.

(skew-selected grp f1x fly £f2x f2y fx fy tx ty)

group real real real real real real real real — unspecified

Skews the appropriate GOs in a such way that the line of the skew is (<f1x, f1y>, <f2x, £2y>)
(everything on that line is not affected by the skew) and the point <fx. fy> is transformed to
<tx, ty>.



Chapter 6: Scheme 59

(transform-selected grpabcde f)
group real real real real real real — unspecified

Transforms the appropriate GOs by the transformation matrix
a b c
d e f)°

(remove-selected grp)
group — unspecified

Removes the appropriate GOs.

(copy-selected src-grp dst-grp)
group group — unspecified

Copies the appropriate GOs to dst-grp.
Transformations in active view

(move-active x y)
real real — unspecified

(rotate-active angle)
real real — unspecified
The center of the rotation is in the center of the view.

(scale-active sx sy)

real real — unspecified

The center of the scale is in the center of the view, but the axes of the scale are not altered by
the rotation of the view.

(skew-active fi1x fly £2x f2y fx fy tx ty)
real real real real real real real real — unspecified

(transform-active abcde f)
real real real real real real — unspecified

(remove-active)
— unspecified

(copy-active dst-grp)
group — unspecified

(duplicate-active)
— unspecified
Copies the appropriate GOs to same the group.

6.13 Windows and views

It is even possible to use Scheme to manipulate with VRR windows, namely with Views. For
this purpose there is a special data type representing VRR windows. All these functions are not
available in the command-line variant of VRR, of course.



60 The VRR User’s Manual

General information

(window? x)
any — boolean
Returns whether the given object is a window.

(active-document)
— document + false
Returns the active document, i.e. the document of the active page.

(active-page)
—  page + false
Returns the active page, i.e. the page of the active view.

(active-group)
— group + false
Returns the active group, i.e. the group of the active view.

(active-window)
—  window + false
Returns the active window.

(active-view)
—  view + false
Returns the active view - if the active window is not a view, then it returns false.

View information

(view? x)
any — boolean
Returns whether the given object is a view.

(view-group vw)
view —  group
Returns the group displayed in the given view.

(view-page vw)
view —  page
Returns the page of the group displayed in the given view.

(view-width vw)
view — natural
Returns the width of the given view (in pixels).

(view-height vw)
view — natural
Returns the height of the given view (in pixels).

(view-center-x w)
window — real
Returns the X coordinate of the image in the center of the view.

(view-center-y w)
window —  real
Returns the Y coordinate of the image in the center of the view.



Chapter 6: Scheme 61

View manipulation

These functions can be used for changing the transformation between the image and the view
(like scrolling and zooming).

(make-view g)
group —  view
Creates a new view displaying the group g.

(view-move vw x y)
view real real — unspecified
Moves (scrolls) the given view by x and y millimeters in the X and Y axes, respectively.

(view-rotate vw angle)
view real — unspecified
Rotates the given view around its center by the angle angle.

(view-scale vw scale-x scale-y)
view real real real — unspecified
Scales the given view around its center by the angle angle.

(view-set-center vw x y)

view real real — unspecified

Scrolls-in the given view so that the point with the coordinates <x, y> becomes the center of the
view.

(view-set-orientation vw center-x center-y scale-x scale-y angle)

view real real real real real — unspecified

Transforms the given view so that the point with the coordinates <center-x, center-y> becomes
the center of the view and the X axis zoom, Y axis zoom and rotation are set to scale-x, scale-
y and angle, respectively.

6.14 Propertial functions

Property values can also be accessed from Scheme. Each property value type has some external
representation, which is used for setting and getting the value of the property. For real numbers,
booleans and strings it is easy, other property value types use a list with symbols (as identifiers
of the property value type) in the first position:

(natural n)
where n is a natural number.

(rgbr gb)
where r, g, b are values from 0 to 255, the color is solid.

(rgbar gb a)
where r, g, b, a are values from 0 to 255.

(font font-family font-style)
where font-family and font-style are strings.

(cap-style symbol)
where symbol is one of: butt, round, projecting

(join-style symbol)
where symbol is one of: miter, round, bevel
(alignment-x symbol)

where symbol is one of: ref-left, ref-center, ref-right, ref-relative, bbox-left,
bbox-center, bbox-right, bbox-relative



62 The VRR User’s Manual

(alignment-y symbol)
where symbol is one of: baseline, bbox-left, bbox-center, bbox-right, bbox-
relative

(arrow-front symbol)
where symbol is one of: straight, parabolic

(arrow-back symbol)
where symbol is one of: none, straight, poly, parabolic

(arrow-alignment symbol)
where symbol is one of: front, back

There exist even more types, but these are the most useful.

For example, to set the fill color to magenta for an object g, you should run:
(set-property! g ’fill-color ’(rgb 127 255 0))

(get-property o name [missing])

o symbol [any] — specific

Returns the value of the property name of o or (missing or false if missing is not set) if no such
property exists.

(set-property! o name value)

obj + go symbol specific — unspecified

Sets the property name of the object o to value. The property is created if no such property
exists.

(get-conic g)

elliptic-arc — list

Returns the list with arc information (see Section 5.3.4.4 [Elliptic arcs|, page 43) about g. In
the list there is the value of the conic property and other associated properties (start, dif) if
they are meaningful.

(set-conic! g conic ...)

elliptic-arc symbol ... — wunspecified

Sets the arc information (see Section 5.3.4.4 [Elliptic arcs|, page 43) of g. It sets the conic
property to conic and the other associated properties (start, dif), which should be given as
arguments when they are needed.

6.15 Transactional functions

At first, you can skip this section if you only use Scheme commands in console to do some work
wit GOs in the active page.

Transactions are a mechanism which allows the grouping of changes to VRR data structures. In
case of some problem in one change, all performed changes to the data structures in the current
transaction are undone. Changes in the Scheme environment are not affected. Transactions are
also used in undo/redo — one successfully passed transaction is one undo history item.

Transactions are somewhat related to exceptions. They both have the same purpose. Transac-
tions are a mechanism of VRR and exceptions are a mechanism of GUILE Scheme. These two
mechanisms are cooperating. If there is an unhandled exception inside a transaction, then the
transaction fails and an exception is propagated outside. If there is a transaction and it fails
from some other reason than an exception, then an exception transaction-failed is thrown.

There are several kinds of transactions: Meta-transactions, which are responsible for operations
on objects of the obj kind. Common transactions, which are responsible for operations on GOs.
And finally subtransactions, which can be nested in meta-transactions or common transactions.



Chapter 6: Scheme 63

Common transactions take an additional argument — a page. So in one common transaction,
there can be operations on GOs in one page; for operations on GOs in another page another
transaction must be used.

Why was there a notice about skipping at the start of this section? Because the VRR console
has a feature of automatic adding common transactions on the active page around the entered
commands. So in common usage there is no need to use transactions explicitly. But the explicit
usage of transactions is needed in guile-vrr.

(trans-main page thunk [handler [dsc]])

. — any
Executes thunk (a function without arguments) in a transaction at page (if page is a regular
page) or a meta-transaction (if page is the universe). handler (common GUILE exception
handling function) is executed in case of a transaction fail. The default handler raises an
exception (or forwards in case that a fail was caused by an unhandled exception). dsc is used
for transaction description.

(trans thunk [handler])

. — unspecified
Executes thunk (a function without arguments) in a subtransaction of the current transaction.
handler (common GUILE exception handling function) is executed in case of a subtransaction
fail. The default handler raises an exception (or forwards in case that the fail was caused by an
unhandled exception).

(trans-page)
—  page + false
Returns the page of the current transaction or false in case that no common transaction is active.

(trans-fail msg)

string — unspecified

Causes the fail of the current transaction. msg is a message with short description of the reason
of the fail.

(undo g)

page + universe — unspecified

Makes global undo (in case that g is the universe) or local undo in the page g (in case that g is
a page).

(redo x)

go + universe — unspecified

Makes global redo (in case that g is the universe) or local redo in the page g (in case that g is
a page).

6.16 Miscellaneous functions

universe
A constant for the root of the n-hierarchy.

(lookup name)
string — go + obj + false
Returns an obj or GO which has the property name set to name (or false if no such object exists).

(load-doc filename)
string — document
Loads a document from file filename.



64 The VRR User’s Manual

(save-doc doc filename)
document string — unspecified
Saves the document doc to file filename.

(save-as-ps doc filename pw ph fit-to-page without-fonts)

document string real real boolean boolean — unspecified

Exports the document doc as PostScript to the file filename. The page dimensions are pw, ph
or computed if fit-to-page is set. without-fonts says whether fonts should be stored in the
PostSript file, too.

(save-as-eps page filename without-fonts)

page string boolean — unspecified

Exports the page page as an Encapsulated Postscript to file filename. without-fonts says
whether fonts should be stored in the EPS file, too.

(save-as-pdf doc filename without-fonts)

document string boolean — unspecified

Exports the document doc as PDF to file filename. without-fonts says whether fonts should
be stored in the PDF file, too.

(save-as-svg page filename)
page string — unspecified
Exports the page page as SVG to file filename.

(plugin-call id argl ...)
number any ... — any
Calls a plugin function identified by the ID id.

(load-plugin filename)
string — unspecified
Loads the plugin filename.



Chapter 7: FAQ 65

7 FAQ

e What is TEX? Do I need to know it to use VRR?

TEX is a typesetting system written by Donald E. Knuth that was “intended for the creation of
beautiful books — and especially for books that contain a lot of mathematics”. Although TEX
text objects are one of the main VRR features, you do not need to know TEX to work with VRR
and create valuable and sophisticated images in it.

To learn about the TEX typesetting program, see Section 3.7.3 [TeX tutorials], page 23.

e What is Scheme? Do I need to know it to use VRR?

Scheme is a dialect of the Lisp programming language. in VRR, you need it to write commands
in the Scheme console. However, all the important commands are accessible from the GUI, too.

To learn about the Scheme programming language, see the beginning of Chapter 6 [Scheme],
page 46 to find a list of links to tutorials.

e What is the purpose of the .scm example files? How do I open them?

The .scm files contain Scheme scripts (commands usable in the Scheme console). You can either
copy and paste them into the console, or load them using the command

(load "/write/the/filename/here")

in the console. It may produce no output; usually the script defines some new Scheme functions
which you can then use in addition the the Scheme and VRR functions. See Section 5.1.10 [The
Scheme console], page 38 to find out how to work with the console and Chapter 6 [Scheme],
page 46 to learn about VRR Scheme functions.

e I have tried to transform an object, but I got the message “This selection cannot be trans-
formed.” What am I doing wrong?

You are trying to transform a dependent object. You might, for example, have snapped one or
more anchors of the object to some hangers (not mouse-clicks). If you try to move the object,
but not the ones containing the hangers, then moving it would disobey the dependencies.

If you want to free the object from dependencies, rehang its anchors to mouse-clicks (see Sec-
tion 4.1 [Anchors and hangers|, page 27, Section 3.6.3 [Anchor rehang], page 19, Section 3.6
[Snap — introducing geometric dependencies|, page 18).

e What is the difference between transformation and anchor rehanging?

Transformations modify the shape of graphic objects, but keep geometric dependencies un-
changed. All snapped objects stay snapped in the same way. In contrast to this, rehanging
of anchors changes geometric dependencies, removes some of them or creates new. See Sec-
tion 3.4 [Transformations of graphic objects], page 11, Section 3.6.3 [Anchor rehang], page 19,
Section 3.6.1 [What is snap? What is it good for?], page 18.

e While creating a new object, I clicked a menu command and the object disappeared. How
come?

By clicking the menu command, you interrupted the operation of the editor (see Section 5.3 [The
mechanism of creating new graphic objects], page 39). Almost all commands are incompatible
with the creation of a new graphic object, that they cancel the current operation, which deletes
the partially created object. The main reason for this is that the editor uses undo history items
to enable the “Step back” feature and does not allow any other actions to interfere with its undo
items.



66 The VRR User’s Manual

e How do you keep a programmer in the shower all day?

Give him a bottle of shampoo which says “lather, rinse, repeat.”

e What is the difference between “local” and “global” undo?

The local undo belongs to a page (each page has its independent undo history) and stores actions
performed on the contents of the page. The global undo stores the other actions not connected
to contents of any page. See Section 4.3 [Documents and pages|, page 29.

e I clicked “undo” when editing a page, but instead of undoing my last action, it made the
page’s View disappear. Why?

You actually clicked the “global undo” which undid the last action not connected to the contents
of any page. In your case, it was the creation of the edited page, so you deleted it. Using the
“global redo” command, you restore the page with all its contents untouched. See Section 4.3
[Documents and pages|, page 29.



Chapter 7: Index

Index

A

A-CeNter ... .. 56
a-controlpoint-1.......... ... ... ... ... ...... 56
a-controlpoint-2 .......... ... ... ... ... ....... 56
a-controlpoint-3 ............. ... ... ... ....... 56
a-controlpoint-4 ................ ... ... ...... 56
A CUTVE . oot ettt e e et e e e e e 56
a—end ... 56
a-start ... 56
absolute shift ............ ... ... ... ... 20, 35, 44
active-document ............... ... ... . ... 60
active-group.............iiiiii 60
active-page........... ... 60
active-view........ ... ... i 60
active-window............... .. .. ..., 60
add new properties............ . ... . .. 34
add to selection............ ... ... .. ... ... 10, 40
align ... 20, 35, 44
anatomy of the Graphical User Interface......... 31
anatomy of the Universe........................ 27
anchor ......... .. .. 55
anchor rehang ................ ... ......... 19, 41
anchor-first-sib........... ... .. ... .. ... 55
AncChor—@o . ...t 59
anchor-hanger................................. 55
Anchor-hanger binding functions ................ 55
anchor-last-sib .............. ... ... ... .. ... 55
anchor-next-sib.......... ... ... .. ... . 55
anchor-prev-sib ........... ... ... ... ... ... 55
anchor-set-hanger! ........................... 56
anchor-term............... ... ... .. .. ... ...... 56
anchors. ........ ..., 19, 27, 41
ATCS .« ettt e 42, 43
F23 5 00) 41

Bézier curves . ............. ... 42
Bézier subdivision................... ... ........ 23
basic actions.............. i 10
basic transformations........................... 14
blue Cross ... 13
blue squares ............ooiiiiiiii 13

C

cache settings................ .. ... ........... 35
carexample . ... 15
cat example. .......... 7
change properties ............. ... ... .. ... 14
change selection............ ... ... ... ... 10
circle, by 3 points......... ... . ... ... .. 43
circle, by center and point ...................... 43
circle, by center and radius ............. ... ..., 43
circular arc, by 3 points ............ ... ... ...... 43
circular arc, by center and radius................ 43
circular arcs .......... . 42
clear selection . ............. ... .. ... . ..., 10, 40
clipboard .......... ... 39
command line............. ... . ... ... .. 26

compilation.......... ... .. 4

67
configure script ......... ... 4
1703 01 {2 43
console. . ... 26, 38
context ... 35, 39
Context Property window....................... 35
COOTAS ..ttt ittt 47
COOTASTC .ot ite ettt et et e e et 48
COPY -+ v ettt et e e e e 10
copy-active............. ... ... 59
copy-selected.............. ... ... .. L. 59
creating a new graphic object................ 39, 41
creating graphic objects .......... ... ... .. 5,7
creating objects......... ... ... .. 47
creating texts........... ... .. i 20
creation of objects ......... ... .. ... ... 47
cubic Bézier curve......... ... . ... ... 42
custom properties.............. ... .. ... 14, 34
CUb. .o 10
D
d-all-children ........... ..., 54
d-all-parentsS...........uiiiiniiiii 54
d-children.............. .. .. .. .. ... 54
d-parent ............... ... 54
d-set-parent!....... ... ... ... .. L 54
data types.......... . 46
debian package.......... ... ... 4
decoration point ............ ... ... ... ... ... 41
delete . ... 10
dependencies . ......... ... ... il 18, 27
dependency . .............iiiii i 54
dependency functions................ ... ...... 54
dependency hierarchy........................... 54
dependency hierarchy and functions ............. 54
documents. ....... ... 29
download ........ .. . .. 4
duplicate-active ............ ... ... ... ... ... 59
E
edit the fixed points............................ 13
editing actions . .......... ... ... ... . 10
ellipse, by 3 points, rotation and eccentricity .. ... 43
ellipse, by center and radii...................... 44
ellipse, by center, point and eccentricity.......... 44
ellipse, by foci and point........................ 44
ellipse, the smallest by 3 points ................. 43
elliptic arc, by center and radii.................. 44
elliptic arcs . ... 43
EPS 11
example......... ... .. i 7, 15, 21, 23
exampleofacat ............ ... . ... .. 7
examples . ... 5
EXPOTE . o et 11
external editor........... ... .. .. .. . . 20



68

FAQ .o 65
Fifi ..o 19, 35
fillstyle . ..o 29
fixed points. ... 13
1 X 14
fonts .. ..o 35
frequently asked questions ...................... 65
functions ............ 46
functions for VRR types............. ... ... ... 47

G

g-ancestors............... i 53
g-children............ ... ... ... ... .. .. 53
g-descendants................ ... ... 53
g-first-child..................... ... ........ 53
g-first-sib....... ... ... ... ... 53
g-last-child.............. ... ... ... ... ... ... 53
g-last-sib........... . ...l 53
g-leaf? ... ... ... 53
g-leaves . ... 53
gmext-sib........ ... 53
goparent ... 53
g-prev-sib....... ... 53
B TO0T .ot 53
g-set-parent!.......... ... ... .. L 53
g-set-parent/after........................... 54
g-set-parent/before.......................... 54
g-set-parent/bottom.......................... 54
g-set-parent/top ........... ... 54
BT 52
B 52
BT 52
BT 52
gadgets. ... 11
geometric dependencies .............. ... ... 18, 27
get-conic........... ... ... 62
get-property...... ... ... 62
global settings ................. ... ... ... .. 35
global undo history.................. ... ... ... 29
go—anchor.............. ... .. ... . 55
go—anchors............... ... ... .. 55
go-hanger.............. ... . ... 55
go-hangers................. ... ... ... 55
gO—SUPErior-page ...........ouiirieinninein... 56
graphic object creating modes................... 41
graphic object transformations .................. 11
graphic objects ....... ... ... L 41
graphic objects, creating.............. ... ... ... 5
graphic objects, creating new ................... 39
GIEEIL CTOSS v vttt ettt ie e e et 13
grid ... 18, 35
GTOUD - e vttt ettt e e e e e 52
group functions .............. ... ... 52
group hierarchy .......... ... ... ... .. .. ... 52
group hierarchy and functions................... 52
GroUP tT€€ . . oot 29
GTOUPS « « v eve et et 26, 29
GULanatomy ........... ... ..., 31

The VRR User’s Manual

h-center........... ... ... ... ... ..l 55
h-controlpoint-1............................. 55
h-controlpoint-2............................. 55
h-controlpoint-3............................. 55
h-controlpoint-4 ............... ... ... ... ..... 55
h-curve....... ... .. ... 55
h-end....... .. ... 55
h-start.......... .. .. .. 55
hanger ... ... 55
hanger-anchors ............................... 55
hanger-first-anchor.......................... 55
hanger-go.......... ... .. ... ... 55
hanger-last-anchor ........................... 55
hanger-term............ ... ... ... ... ... ... ... 56
hangers...... ... ... ... 18, 27, 41
hardware requirements .......................... 3
help browser......... ... ... i 35
hierarchy ........... ... . 56
horizontal flip........ ... ... .. ... ... 14
how toinstall VRR ................. ... ... ... .. 3

I

i-center........ ... ... 56
i-controlpoint-1........... ... ... ... ... ...... 56
i-controlpoint-2.......... ... . ... .. ... 56
i-controlpoint-3 ........... ... ... ... ... 56
i-controlpoint-4 ........... ... ... ... ... ... 56
I=CUTVE . ettt e 56
i-end ... ... 56
i-start ... 56
icon categories ... ... 5
IMPOTt « .o 11
indication of snap .......... ... ... 19
installation ........ ... ... ... 4
installation instructions.......................... 3
installation requirements......................... 3
inter-hierarchy movement ....................... 56
intersection point .......... .. .. ... ... L 42
introduction ........... ... .. i 1

K

keyboard shortcuts............ ... ... ... ... ... 31

load. ... 11
load-doC . ....ooii i 63
load-plugin............ ... ... . ... . ... 64
loading plugins................... ... .. ... 37
local undo history ............. ... ... ... ... ... 29



Chapter 7: Index

M

magenta CroSS. ............uiuiriuiiinenenan... 13
magenta SqUATeS . . ..ot 12
Main window . ........ .. ... . 31
make-bezier/2........ .. ... .. 50
make-bezier/2r ......... ... ... 50
make-bezier/3...... ... ... 50
make-bezier/3r ... ... 50
make-common-document ......................... 47
MaKe—COMMON="PAGE . -« v v veeeveeevaeeeaneennn. 47
make-cubic-bezier ................. ... ... ..., 49
make-cubic-rational-bezier .................. 49
make-decorator-arrow......................... 50
make-decorator-arrow-on-hanger .............. 50
make-decorator-point ......................... 50
make-document.................i i 47
make-elarc-by-3-points-smallest ............. 48
make-elarc-by-center-2-radii-rotation-2-angles

.......................................... 48
make-elarc/3ps ... 50
make-elarc/c2rr2a ..ot 50
make-ellipse-by-2-foci-point ................ 48
make-ellipse-by-3-points-rotation-eccentricity

.......................................... 48
make-ellipse-by-3-points-smallest........... 48

make-ellipse-by-center-2-radii-rotation .... 48
make-ellipse-by-center-point-rotation-

eccentricity .............. . ... ... L. 48
make-ellipse/2fp ............... ... ..., 50
make-ellipse/3pre ................coiiiii.... 50
make-ellipse/3ps ... ...t 50
make-ellipse/c2rr .......... ...t 50
make-ellipse/cpre ............................ 50
MaKE=GLOUD . . .ottt 50
make-intersection............... .. ... ... ... 49
make-intersection-on-hanger ................. 50
MAKE—PAGE . . oottt 47
make-parametric-point............... ... ... ..., 49
make-parametric-point-on-hanger ............. 49
make-path......... ... ... ... ... .. il 50
make-point............ ... ... i 48
make-quadratic-bezier........................ 49
make-quadratic-rational-bezier .............. 49
make-segment........................ . 48
make-tex-text......... ... ... .. ... ... 49
make-teXt ...... ... ... 49
make-vView.......... ... 61
maximum undo history volume.................. 35
miscellaneous functions................... .. ... 63
modifying the properties........................ 14
mouse-clicks . ... ... 29
TNOVE . .ottt ettt et e e e e 11, 58
move-active..............iiiiii 59
move-selected........... ... ... ... 58
MOVEMEND . ..ottt 56
N
N-aNCEeSTOrS .. ..ottt 52
n-children.............. ... ... ... ... ... ... ... 52
n-descendants............... ... ... 52
n-first-child............ ... ... ... .. ... .. ... 51
n-first-sib......... ... .. ... il 51

69
n-last-child.......... ... ... ... ... ... .. ... 51
n-last-sib........ ... .. .. 51
n-leaf?. ... ... 52
N-1eavesS . ...t 52
n-next-sib......... .. ... L L 51
n-parent .............. . 51
n-prev-sib........ ... 51
n-set-parent!......... ... ... ... ... 52
NS T 51
NS 51
D=7 51
N0 51
NAMESPACE . « « v e voeve e e e e e e e 51
namespace functions................ ... . ... 51
namespace hierarchy ................. ... ... ... 51
namespace hierarchy and functions .............. 51
P
Page—g-TOOL . ...t 56
PAZES .« v ettt e 29
PANNING . ..ot 31, 35
paste. ... ... 10
paths ... ... 26, 29
PDF . 11
picture anatomy .............. .. ... . .. 27
Plugin Manager window ........................ 37
plugin-call.............. ... . ... ... 64
plugins. ... . ... 37
point. ... 41
predefined basic transformations ................ 14
propertial functions ........... ... .. ... . ... 61
properties. .. ... 14, 34
properties of universe................ ... .. ..... 35
properties, add new . ......... ... . ... ... 34
properties, delete......... .. ... ..o L. 34
properties, edit ............ 34
Property window ................... ... ... 14, 34
proxy-kind........... ... ... ..l 47
proxy-subtype.......... ... ... L. 47
PIOXY=tYPC . oottt 47
PLOXY T ot 47
P e 11
Q
quadratic Bézier curve.......................... 42
QUESHIONS .« o oot 65
R
Ted CrOSS . v o vttt e e 11, 13
Ted SQUATES . o .o v ettt et 11
TedO. oot 10
TeAO .ottt 63
rehang ... .. ... . L 19
relative shift . ......... ... . ... ..., 20, 35, 44
remove from selection ....................... 10, 40
remove-active............ .. ... ... 59
remove-selected .......... ... ... L. 59
removing the binaries............................ 4
TESIZE © vttt et e 11
rotate. ... 12, 58
rotate by 180 degrees............. ... . ... ... 14



70

rotate by 270 degrees.......... ... . ... ... 14
rotate by 90 degrees.......... ... ... ... 14
rotate-active........ ... ... 59
rotate-selected ............ ... ... .. ..., 58
TOtation . ... 31
ruler resolution ........... ... ... .. ... ... ..... 35

S

Santiago’s transform mode............ ... ... ... 40
Santiago’s transform tool ....................... 13
SAVE . ottt 11
BAVE=ASTEPS . oottt 64
save-as-pdf....... ... .. 64
SAVE AS PSS -« ottt 64
SAVE=AS SV . .ttt tie e 64
SAVE—dOC . ...t 63
scale ... 58
scale-active.......... ... 59
scale-selected ............ ... ... .. .. ... 58
Scheme............. ... ... ... 26, 38, 46
Scheme console ............ ... .. ... ... ... 26
Scheme Console window ........................ 38
Scheme data types ................... ... 46
Scheme functions............................... 46
segment . ... 42
select ... ... 58
select all ........ ... .. 10, 40
select-g-children............................ 58
Select/Transform mode . ........................ 40
Select/Transform tool .......................... 11
selected-g-children.......................... 57
selected-g-descendants....................... 57
selected-objs. ... 57
selected?...... ... 57
selection ......................... 10, 11, 32, 40, 57
selection bounding box...................... 10, 11
selection functions. ............ ... . ... .. ...... 57
set-conic!....... .. .. ... 62
set-i-center!......... ... ... il 56
set-i-controlpoint-1!............... ... ..... 56
set-i-controlpoint-2!................... .. ... 56
set-i-controlpoint-3!........................ 56
set-i-controlpoint-4!............ ... ... ... .. 56
set-i-curve!........ ... ... .. L 56
set-i-end!....... ... ...l 56
set-i-start!........ .. ... ... il 56
set-property!......... ... . ... 62
settings ........ ... 35
settings, global. ... ... ... . ... o il 35
simple graphic objects, creating .................. 5
SKeW . . 13, 58
skew-active......... ... ... ... i 59
skew-selected............ ... ... ... .. ... 58
SIAD « vttt e 18, 45
snap example . ...... ... 23
snap indication ........... . ... ... oL 19
snap settings............ ... il 45
snap tolerance .......... ... .. ... . 35
software requirements ............... .. .......... 3
stepback....... ... 6
SVG . 11

The VRR User’s Manual

T

terminal . ... ... ... .. 35
e X 23
TeX texts .. .ooovn 20, 45
TeX tutorials .............o i, 23
Text Editor window......................... 20, 35
texts. ... 20, 35, 44, 45
texts example . ... 21, 23
the first simple graphic objects................... 5
toolbar iCONS. . ...t 5
top-level group............ ... ... L. 29
BLANS . et 63
trans-fail......... ... .. 63
trans-main.............. . i 63
EranS-—Page .. ...t 63
Transactional functions......................... 62
transform.......... ... 58
transform-active ......... ... ... ... .. 59
transform-selected ........................... 58
transformational functions...................... 58
transformations .................. 11, 13, 14, 40, 58
transforming using the Select/Transform tool. .. .. 11
tutorial .. ... . .. 5

UNAO .« v 10, 29, 33
UNAO . oottt 63
undo history......... ... ... 33
Undo History window .......................... 33
undo history, global ............................ 29
undo history, local ................... ... ... ... 29
undo history, maximum number of items......... 35
undo history, maximum volume ................. 35
Unit Manager window . ......................... 37
UNIES .« e 37
UNIVETSE .« . ettt e e e e e 27
Universe Browser ................. ... ... ....... 32
unloading plugins . ............ ... ... . 37
unselect ........... .. 58
unselect-all......... ...t 58
unselect-g-children.......................... 58

v

vertical flip.......... ... 14
VoW .o 31
View Navigator window ........................ 31
View toolbar. ........ ... ... .. ... . . 5
VieWw—Center—X......ouuiei e 60
view-center-y................... 60
VIeW=group......covniiii 60
view-height.......... ... ... ... ... ... ... ... ... 60
VIGWMOVE . . vttt ettt et e e 61
VieW-Page . . ..o 60
view—rotate........ ... 61
View—scale ... ..ot 61
view-set-center ................. .. ... 61
view-set-orientation......................... 61
view-width....... ... ... . . 60
VAW ot 60
VI WS e vttt e e 59



Chapter 7: Index

\%\%

Window? . ... 60
WINdOWS ... .o
windows and vViews .. ........... ...
WWW DrOWSeI. .. ...

Y

your own properties

Z

71
z-move-bottom! ....... .. ... ... 57
Z-move-dowWn! .. ... ... 57
z-move—top! ... ... 57
ZMOVE—UP! ..ottt 57
Z-OTAer ..o 26, 29, 56
z-order functions............... ... ... ... 56
ZE T 57
2R 57
2T T 57
2 57



	Introduction
	Installation Instructions
	Installation Requirements
	Compilation
	Installation

	Tutorial
	The first simple graphic objects
	Creating graphic objects -- overview
	Creating graphic objects -- the cat example

	Selection
	Basic actions
	Transformations of graphic objects
	Transforming using the Select/Transform tool
	Santiago's transform tool
	Predefined basic transformations

	Modifying the properties
	Modifying the properties -- Introduction
	Modifying the properties -- The car example

	Snap -- introducing geometric dependencies
	What is snap? What is it good for?
	Fifi
	Anchor rehang

	Creating texts
	Texts -- Overview
	Texts -- Examples
	TeX tutorials
	Texts and Snap -- the B{e}zier subdivision example

	Groups and paths
	Controlling VRR from the command line

	The Anatomy of the Universe
	Anchors and hangers
	The group tree of a page
	Groups
	Paths

	Documents and pages

	The Anatomy of the Graphical User Interface
	Windows
	The Main Window
	The View
	Universe Browser
	The Undo History Window
	The Property Window
	The Text Editor
	Global Settings
	The Unit Manager
	The Plugin Manager
	The Scheme console
	The Clipboard

	The context
	The mechanism of creating new graphic objects
	The Select/Transform mode
	The Santiago's transform mode
	Anchor Rehang mode
	GO Creating Modes
	Points and decorations
	B{e}zier curves
	Circular arcs
	Elliptic arcs
	Texts

	Snap settings


	Scheme
	VRR Scheme data types
	VRR Scheme functions
	Functions for VRR types
	Creation of objects
	The namespace hierarchy and functions
	The group hierarchy and functions
	The dependency hierarchy and functions
	Anchor-hanger binding functions
	Inter-hierarchy movement
	Z-order functions
	Selection functions
	Transformational functions
	Windows and views
	Propertial functions
	Transactional functions
	Miscellaneous functions

	FAQ
	Index

