
The

VRR
Programmer’s Manual

Copyright c© 2005 The VRR Team vrr@ucw.cz

mailto:vrr@ucw.cz

i

Table of Contents

1 Introduction . 1
1.1 About this manual . 1
1.2 Developers’ center . 1
1.3 Project background . 1

1.3.1 The original idea . 1
1.3.2 Development history . 2
1.3.3 The present situation. 3
1.3.4 Acknowledgement . 3

2 Development tools . 4
2.1 Source tree. 4
2.2 Bug tracking system . 4
2.3 Project building system . 4

2.3.1 Directory structure preview . 4
2.3.2 Configure script. 5
2.3.3 Makefiles . 5

2.4 Main programming language . 6
2.5 Scripting language . 6
2.6 External programs . 7

2.6.1 Libraries . 7
2.6.1.1 GTK+ library . 7
2.6.1.2 Guile library . 7
2.6.1.3 LibKPathSea library . 7
2.6.1.4 FontConfig . 7
2.6.1.5 Zlib library . 7
2.6.1.6 LibXML library . 7
2.6.1.7 LibPaper library . 7
2.6.1.8 FreeType library . 7
2.6.1.9 Cairo library . 8

2.6.2 Other tools . 8
2.6.2.1 GNU make . 8
2.6.2.2 Autoconf . 8
2.6.2.3 GNU awk . 8
2.6.2.4 Perl . 8
2.6.2.5 pdfTEX . 8

3 Project structure overview . 9
3.1 VRRLIB . 9
3.2 GEOMLIB. 9
3.3 Kernel . 9
3.4 GUI . 9
3.5 VCL . 9
3.6 FONTLIB . 9
3.7 Plugins . 9
3.8 Export . 9
3.9 Import . 10
3.10 Scheme . 10

ii The VRR Programmer’s Manual

4 VRRLIB . 11
4.1 Main project header . 11
4.2 Logging and debugging . 11
4.3 Memory allocation . 12
4.4 Sorter . 12
4.5 Data structures . 12

4.5.1 Hash table . 12
4.5.2 AVL-Tree . 12
4.5.3 Cache . 13
4.5.4 Linked lists . 13
4.5.5 Growing array . 13

4.6 Miscellanea . 14

5 GEOMLIB . 15
5.1 Overview . 15

5.1.1 Purpose . 15
5.1.2 Error handling . 15
5.1.3 Floating-point arithmetic . 15
5.1.4 Functions input and output . 15
5.1.5 Header files. 16
5.1.6 Self-testing code . 16

5.2 Numerical algorithms . 16
5.2.1 Polynomials in power form . 16
5.2.2 Polynomials in Bernstein form . 17
5.2.3 Matrix routines . 17
5.2.4 Points and vectors . 17
5.2.5 Affine transformations . 18

5.2.5.1 Transformation structure . 18
5.2.5.2 Two-directional transformation structure . 19

5.3 R*-Tree . 19
5.3.1 Structures . 19
5.3.2 Data insertion . 20
5.3.3 Data deletion . 21
5.3.4 Data updates . 21
5.3.5 Rectangular queries . 21
5.3.6 Dynamic rectangular queries . 22
5.3.7 Center pass algorithm . 22

5.4 Objective programming . 22
5.4.1 Introduction . 22
5.4.2 Definition of a new class . 23
5.4.3 Initialization and destruction . 23
5.4.4 Virtual methods . 24
5.4.5 Class hierarchy . 24

5.5 Common curves interface . 25
5.5.1 Items and groups . 25
5.5.2 Curves . 25
5.5.3 Parametrizations . 26

5.5.3.1 TIME . 26
5.5.3.2 BTIME . 26
5.5.3.3 ATIME . 27
5.5.3.4 RATIME . 27

5.5.4 Geometrical methods . 27
5.6 Elementary curves . 27

iii

5.6.1 Rational Bézier curves . 27
5.6.1.1 Definitions . 27
5.6.1.2 Properties of rational Bézier curves . 28
5.6.1.3 Recursive subdivision . 29
5.6.1.4 Evaluation of points and derivation vectors . 30
5.6.1.5 Euclidean arc length . 31
5.6.1.6 Points with a given tangent . 31
5.6.1.7 Bounding box . 32
5.6.1.8 Curve points in a given distance to a point . 32
5.6.1.9 Curve point nearest to a given point . 32
5.6.1.10 Intersections . 33
5.6.1.11 Degree elevation. 34

5.6.2 Segments . 34
5.6.3 Elliptic arcs . 34

5.6.3.1 Definitions . 34
5.6.3.2 Normalized form . 35
5.6.3.3 Initialization . 35
5.6.3.4 Bézier expansion . 36
5.6.3.5 Affine transformation . 37

5.7 Compound paths . 37
5.7.1 Class path. 37
5.7.2 Class fpath . 38

5.8 Special curve types . 39
5.8.1 Point item. 39
5.8.2 Callback-expansion item . 39

6 Kernel . 41
6.1 Kernel overview . 41
6.2 Objects . 41

6.2.1 The object hierarchy . 41
6.2.2 Graphic objects . 43

6.2.2.1 Point . 43
6.2.2.2 Segment . 43
6.2.2.3 Bézier curve . 43
6.2.2.4 Elliptic arc . 44
6.2.2.5 Parametric point . 44
6.2.2.6 Intersection point . 44
6.2.2.7 Text and TEX text . 45
6.2.2.8 Decoration point . 45
6.2.2.9 Arrow . 46

6.2.3 Groups . 46
6.2.4 Paths . 46
6.2.5 Pages . 46
6.2.6 Linking and unlinking . 47

6.3 Transactions and topological sorting . 48
6.3.1 How to use transactions . 48
6.3.2 Undo histories . 49
6.3.3 Geometric dependencies and topological sorting . 49
6.3.4 Using topological sorting . 51

6.4 Hooks . 51
6.4.1 Object hooks . 52
6.4.2 GO hooks . 52
6.4.3 Transaction hooks . 53
6.4.4 Unit hooks . 53

iv The VRR Programmer’s Manual

6.5 Properties . 53
6.5.1 Property types and subtypes . 54
6.5.2 Units . 55
6.5.3 Virtual properties . 55

6.6 Clipboard . 56
6.7 Strings . 57

7 GUI . 58
7.1 GUI Overview . 58
7.2 Windows . 58

7.2.1 The View . 59
7.2.2 The Universe Browser . 59
7.2.3 The Property Editor . 59
7.2.4 The Text Editor . 60
7.2.5 The Global Settings . 60
7.2.6 The Undo History Window . 60
7.2.7 The Unit Manager . 60
7.2.8 The Plugin Manager . 60

7.3 The Command Structure . 61
7.3.1 The Context . 61
7.3.2 Command Definitions . 61
7.3.3 Command Editing Actions. 63
7.3.4 Plugin Menu Functions . 63

7.4 The Visualisation. 64
7.5 The GO Factory . 65

7.5.1 State definitions . 65
7.5.1.1 Snap result states . 66
7.5.1.2 Property value states . 67

7.5.2 Transitions between states . 67
7.5.3 Usage of Undo Items . 69
7.5.4 Snap . 70

7.6 Property Editor Widgets . 70
7.6.1 Property Structure Definitions . 71
7.6.2 Unit Lists . 72
7.6.3 Hook Handling and Transactions . 72
7.6.4 Property Recycler. 72

7.7 Transformation Tools and Mouse Event Processing . 73
7.7.1 Step-by-step Transformations . 73
7.7.2 The Experimental Fifi . 73

7.8 Special GTK Objects and Widgets Used . 74
7.8.1 The GtkTreeModel Interface for Internal Structures . 74
7.8.2 Rulers . 74
7.8.3 Color Selection Dialog . 74

v

8 VCL . 75
8.1 VCL Overview . 75

8.1.1 The purpose of VCL . 75
8.1.2 VCL general usage . 75
8.1.3 Transformations . 75
8.1.4 Interface sightseeing tour . 75
8.1.5 Propagation . 76
8.1.6 VCL Properties . 76
8.1.7 Alive and dead objects . 76
8.1.8 Naming, programming and documentation conventions . 77

8.2 Interface reference . 77
8.2.1 Interface overview. 77
8.2.2 Composite interface . 77
8.2.3 Container interface . 78
8.2.4 Enclosure interface . 78
8.2.5 Mask interface . 79
8.2.6 Node interface . 79
8.2.7 Object interface . 80
8.2.8 Painter interface . 80
8.2.9 Placement interface . 81
8.2.10 Shape interface . 81
8.2.11 Transformation interface . 82

8.3 Class reference . 83
8.3.1 Class overview . 83
8.3.2 Char class . 83
8.3.3 Grid class . 83
8.3.4 Path class . 84
8.3.5 Rect class . 84
8.3.6 Segment class. 84
8.3.7 String class . 84
8.3.8 Affinity class . 84
8.3.9 Group class . 85
8.3.10 Lazy-expanding-area class . 85
8.3.11 Offset class . 87
8.3.12 Property class . 87
8.3.13 TEX-layout . 88
8.3.14 Text-layout . 88
8.3.15 Canvas class . 88
8.3.16 Painter-cairo class . 89
8.3.17 Painter-plainx class . 89

8.4 VCL Miscellanea . 89
8.4.1 Object system implementation . 89
8.4.2 vcl-rectangle . 89
8.4.3 vcl-growing-array . 89
8.4.4 vcl-context . 89
8.4.5 Packed colors . 90

vi The VRR Programmer’s Manual

9 FONTLIB . 91
9.1 FONTLIB overview . 91
9.2 FONTLIB programmers usage . 91
9.3 FreeType library usage. 92
9.4 Supported font formats . 92

9.4.1 PostScript Type1 fonts . 92
9.4.1.1 Type1 PFA fonts . 93
9.4.1.2 Type1 PFB fonts . 93

9.4.2 TrueType fonts . 93
9.4.3 PostScript Type42 fonts . 94

9.5 Font rendering . 94
9.6 Font conversions . 94

9.6.1 PFA to PFB conversion . 94
9.6.2 PFB to PFA conversion . 94
9.6.3 TrueType to Type42 conversion . 94

9.7 Other FONTLIB functionality. 94

10 Plugins . 96
10.1 Plugin mechanism implementation . 96
10.2 Rules for writing plugins . 96
10.3 Implemented plugins . 97
10.4 GUI Plugin Interface . 97

10.4.1 Basic Features for Plugins . 97
10.4.2 How to Avoid Plugin Problems . 98
10.4.3 An Example of a GUI Plugin . 98

11 Export . 100
11.1 PostScript export . 100

11.1.1 Encapsulated PostScript . 100
11.2 PDF export . 101
11.3 SVG export . 101

12 Import . 102
12.1 DVI import . 102
12.2 IPE import . 102
12.3 SVG import . 102

13 Scheme . 104
13.1 Scheme kernel data types . 104
13.2 Scheme GUI data types . 104
13.3 Scheme bindings for VRR functions . 104
13.4 Scheme snarfing . 105
13.5 Scheme modules . 106
13.6 Scheme exceptions and transactions . 106

14 Documentation . 107
14.1 Building manuals . 107
14.2 Building source code documentation . 107

vii

15 Future plans . 108
15.1 VRRLIB . 108
15.2 GEOMLIB . 108
15.3 Kernel . 108
15.4 GUI . 109
15.5 VCL . 109
15.6 FONTLIB . 109
15.7 Plugins . 109
15.8 Export and Import . 109
15.9 Scheme . 109
15.10 Other . 109

Appendix A License . 110
A.1 GNU GENERAL PUBLIC LICENSE . 110
Preamble . 110
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

. 110

Index . 115

viii The VRR Programmer’s Manual

Chapter 1: Introduction 1

1 Introduction

VRR (a Vector-based gRaphic editoR) is an application designed especially for creating illustra-
tions of mathematical articles.

1.1 About this manual

This book does not contain instructions how to use VRR, for that purpose consult The VRR User’s
Manual. Instead, it covers the principles behind the source code and allows a programmer to get
familiar with VRR sources easily. Furthermore, almost all source files and headers are heavily
commented.
The Programmer’s Manual is not the reference documentation of all VRR libraries and modules.
For that purpose, consult the reference manual prepared from source code. The source code
documentation is extracted using the Doxygen tool into HTML to allow fast navigation through
function descriptions, structure index, etc. See Chapter 14 [Documentation], page 107 for details.
However, as VRR is under constant development, some of the contents of this book can easily
get outdated, because there is always some delay between changing the source code and source
code documentation and between changing the Programmer’s Manual. Fortunately, the project
design is reasonably robust and therefore we expect the design changes in the future to be only
minimal.

1.2 Developers’ center

The VRR project main web site is at http://vrr.ucw.cz/. Here you can find current news
regarding the project, new releases, documentation and links to miscellaneous files.
The developers use a mailing list (the VRR list), so if you are interested in programming VRR
or would just like to ask a few questions, feel free to contact the developers at vrr@ucw.cz.
Currently, the list languages are Czech and English, as there are now no non-Czech members,
but this can change in the future in favour of English-only.
At the time of writing this book, this is the list of active developers (a.k.a. The VRR Team):
• Martin “MJ” Mareš (project advisor)
• Jirka Fink – Kernel
• Pavel Charvát – GEOMLIB, parts of VRRLIB

• Eva Ondráčková – GUI

• Tomáš Valla – FONTLIB, parts of Kernel, PS/PDF export, IPE5 import, VRRLIB

• Zuzka Vlčková – parts of GUI, SVG export/import
• Ondřej “Santiago” Zaj́ıček – VCL, Visualisation, Scheme, Save & Load

So if you wish to join us, contact our mailing list. We welcome any support.

1.3 Project background

1.3.1 The original idea

The VRR project started as a school software project at the Faculty of Mathematics & Physics,
Charles University, Prague, Czech Republic. The work begun in winter 2003 and at the beginning
was heavily influenced by the IPE vector editor. In 2003, IPE (version 5.0) was terribly outdated
and incompatible with X Window system libraries, resulting in frequent program crashes and
errors. But there were great ideas behind IPE’s logical design, so we decided to create “our own
IPE” enhanced by a powerful scripting language and many other useful features. So we formed
the VRR Team, applied with VRR as a school software project and started to work.

http://vrr.ucw.cz/
mailto:vrr@ucw.cz

2 The VRR Programmer’s Manual

However, in the spring of 2004, surprisingly the new IPE version 6.0 appeared, correcting most
of its nastiest bugs. We therefore changed our mind and redesigned VRR features (fortunately
not much was written at that time) into a new and original vector editor, today overwhelming
IPE in most ways.

1.3.2 Development history

The development history is as follows:
• October 2003: Specification, the first assignment of tasks to programmers.
• November 2003: The choice of programming language, auxilliary development tools (CVS,

Doxygen, . . .). Studying of various graphical formats and the Guile library. GUI design
proposition. Kernel data structures design proposition. The choice of supported graphical
objects and supported operations.

• December 2003: The beginning of the actual coding. Coding style choice. Extending ideas
of graphical objects and operations. Searching for suitable algorithms for propagation of
transformation changes of dependent objects. We suggested to use cascade style-sheets to
set object properties and style.

• January 2004: Undo history design. We decided to use transaction mechanism for change
tracking or kernel data structures.

• February – March 2004: We precised the kernel data structures design, chose the represen-
tation of dependence relations between graphical objects. We also precised the GUI look
and feel.

• May 2004: Programming. We implemented a large part of GEOMLIB, some kernel data
structures, GUI backbone. Renderer design. We linked the Scheme library with kernel,
wrote scheme console in GUI.

• June – September 2004: Holidays.
• September – October 2004: We implemented more kernel data structures. Linked renderer

with GUI. Implemented R-Tree as a search data structure in GEOMLIB. We also did a
massive source code cleanup. The “snarfing” system for generating Scheme function headers
was introduced. A topological sorter for geometric recomputations.

• November 2004: The design of virtual properties. A DVI parser for TEX output process-
ing. Redesign of the transaction mechanism. Context evaluations in the GUI Command
Structure. Basics of PS, EPS, and PDF export.

• December 2004: Preparations for the first public release. Implementation of the GO Factory
and snap. Questions about font identification. TEX text processing. The choice of the
FreeType library for text rendering.

• January 2005: The first pieces of User’s Manual. The first public release, version 0.5.
Santiago’s traneformation tool.

• February 2005 – April 2005: We added the support for colors. A new transformation
tool. GO groups and paths. Property generator macros. Problems with numeric errors for
transformations of many objects which caused major design changes in kernel. The choice
of libpaper for export paper sizes. IPE5 import. The plugin mechanism.

• April 2005: Another public release, version 0.6.
• May – June 2005: SVG import/export. Major redesign of some parts of GUI. A CVS branch

for huge kernel changes including changes in the kernel interface and thus all the dependent
modules. The choice of Texinfo as a documentation tool. GEOMLIB and VCL did undergo
some design changes, too.

• June 2005: Another two public releases, versions 0.7 and 0.8. A http://freshmeat.net/
announce (which was mentioned later in an article at http://root.cz/). A public presen-
tation of the project at the Department of Applied Mathematics.

http://freshmeat.net/
http://root.cz/

Chapter 1: Introduction 3

• July 2005 – August 2005: The choice of Bugzilla as a bug-tracking system. Debugging, doc-
umentation. Implementation of many minor features. The Scheme interface was replaced
by a new one. Another public release, version 0.9.

• September 2005: The anticipated presentation.

VRR is a free software project developed under the GNU Public License. The authors didn’t get
paid even one crown for this. :) See Appendix A [License], page 110 for the distribution and
usage terms.

1.3.3 The present situation

We have managed to create an editor that enables easy creation of mathematical drawings,
which was our main aim. VRR offers a unique combination of these main features:
• Geometric dependencies which can be easily created by snap. In some well-known geometric

design tools, you can create much more complex geometric constructions using projections
and some other features that VRR does not have. But in VRR you can create partially de-
pendent objects which can then be transformed, free them from dependencies or reorganize
the dependency structure completely – you have much more freedom if you want to create
a not very geometric image.

• TEX texts, a crucial feature for mathematical drawings. Unlike other editors, VRR enables
you to create and view the resulting text instantly, you can even apply transformations to it.
The whole image can be exported to PostScript, which is also a necessity for mathematical
drawings.

• Various graphic features – they are not very many and could be improved vastly in VRR.
VRR does not support fancy stroke and fill styles, gradients, . . . as vector graphic editors
usually do. However, such features are usually not used in illustrations of mathematical
papers; for that, VRR’s graphic capabilities are quite sufficient.

We can now see almost infinitely many possibilities how to improve VRR, which features to add
. . . Thus we could keep ourselves occupied for the next ten years. Regrettably, we need to
submit VRR and work on some other things as well. Anyway, we are going to maintain VRR in
the future; we enjoy the users’ feedback that we already have and hope that our work will be
useful.

1.3.4 Acknowledgement

We would like to thank the staff and students of the Department of Applied Mathematics, MFF
UK, for allowing us to use the department computers and moreover for serving as very useful
betatesters, and thus partially supporting our work.
We also owe many thanks to our advisor, Martin Mareš, for a very attentive supervision, nu-
merous comments and ideas, and invaluable advice.

4 The VRR Programmer’s Manual

2 Development tools

This chapter documents the background of the source code. This means: how the source code is
maintained, what standards of programming languages we used, how we report bugs, the system
of source compiling and the list of external programs and libraries.

2.1 Source tree

All source files are stored in a CVS repository at the server ‘atrey.karlin.mff.cuni.cz’, in the
‘/akce/projekty/vrr/CVS’ directory. All developers have access to this repository. Currently,
there is no public access, but we plan to change it in the future.

The current VRR stable release sources should always be available at http://vrr.ucw.cz/ as
‘.tar.gz’ or ‘.tar.bz2’ files.

Every change of the repository (the CVS commit command) is sent into the VRR mailing list
(see Section 1.2 [Developers’ center], page 1) as a diff data and the CVS log message. This
allows developers to keep active eye on other’s work.

2.2 Bug tracking system

The primary way to report bug is to send e-mail to VRR mailing list (see Section 1.2 [Developers’
center], page 1). Long time we used the file ‘TODO’ in the root source directory to maintain the
list of bugs in various status.

Then it became clear, that a ‘TODO’ is not enough and we installed the Bugzilla bug tracking
system, available at http://vrr.ucw.cz/bugzilla/. All developers are granted access and can
browse list of their bugs, change their status, write comments, report new bugs, etc.

All traffic from Bugzilla is mirrored into VRR mailing list and it is possible to reply to Bugzilla
messages via e-mail. Just reply to vrrzilla@atrey.karlin.mff.cuni.cz instead of VRR list
address.

2.3 Project building system

In this section is described, how VRR is being configured and compiled.

2.3.1 Directory structure preview

After getting sources, the following directory structure should appear in the directory ‘vrr’:
drwxr-xr-x 3 tom users 4096 Aug 28 11:59 build

-rw-r--r-- 1 tom users 17992 Jan 13 2005 COPYING

drwxr-xr-x 6 tom users 4096 Aug 28 14:40 doc

drwxr-xr-x 3 tom users 4096 Jul 19 19:03 examples

drwxr-xr-x 3 tom users 4096 Aug 29 13:45 export

drwxr-xr-x 3 tom users 4096 Aug 27 11:10 font

drwxr-xr-x 4 tom users 4096 Aug 29 13:36 geomlib

drwxr-xr-x 4 tom users 4096 Aug 28 17:12 gui

drwxr-xr-x 3 tom users 4096 Aug 28 18:14 import

-rw-r--r-- 1 tom users 1616 Jun 24 18:26 INSTALL

drwxr-xr-x 3 tom users 4096 Aug 29 13:43 kernel

drwxr-xr-x 3 tom users 4096 Aug 25 22:49 lib

-rw-r--r-- 1 tom users 6479 Aug 28 14:39 Makefile

drwxr-xr-x 3 tom users 4096 Jul 25 14:04 plugin

-rw-r--r-- 1 tom users 3873 Jun 26 11:01 README

drwxr-xr-x 3 tom users 4096 Aug 25 18:30 scheme

-rw-r--r-- 1 tom users 3722 Jul 25 14:03 TODO

drwxr-xr-x 3 tom users 4096 Jul 29 18:21 vcl

http://vrr.ucw.cz/
http://vrr.ucw.cz/bugzilla/
mailto:vrrzilla@atrey.karlin.mff.cuni.cz

Chapter 2: Development tools 5

2.3.2 Configure script

VRR uses GNU Autoconf configure script to setup build conditions. It is placed in the ‘build’
directory.
Generated script is in the file ‘configure’ (which should be always present in distributed
sources), its Autoconf source code is in ‘configure.in’.
• The files ‘config.h’ (with Autoconf source ‘config.h.in’) and ‘types.h’ (Autoconf source

‘types.h.in’) are intended to be included by main VRR header, ‘lib/lib.h’.
• The file ‘makeconfig’ (source ‘makeconfig.in’) is included by root ‘Makefile’ as a build

configuration.
• The file ‘path.h’ is there to allow project modules to include the installation path string.

Currently, these checks are implemented in ‘configure.in’:
• Library availability and check for the required version. See Section 2.6 [External programs],

page 7 for the list of required and optional libraries.
• Computer endianity test.
• Compiler and some of the auxiliary tools check.
• C language data types size detection. The detected types are written into ‘types.h’.

Don’t forget to change VRR version in ‘configure.in’ and to rebuild ‘configure’ script by
Autoconf with every new release.

2.3.3 Makefiles

VRR uses GNU Make and sophisticated ‘Makefile’ files structure for building process. In the
root directory, there is the main ‘Makefile’ containing the bulk of building rules and in almost
every subdirectory there is a local ‘Makefile’.
The main difference between VRR and other projects using many ‘Makefile’s is that make
doesn’t get called recursively for every subdirectory. Instead, every local ‘Makefile’ is included
into the main ‘Makefile’ (and ‘Makefile’ from subsubdirectory gets included into subdirectory
‘Makefile’, and so on). Thus it is possible to use all rules and variables from the root ‘Makefile’,
speeding and simplifying the compilation process reasonably.
Another significant difference is that all binaries and object files are not created among the
sources, but rather in the directory ‘obj’ in a directory structure resembling the original source
tree. Also, all binaries and other data is then installed in the ‘run’ directory.
In the root ‘Makefile’, there are many automating rules like handling C sources, linking of
binaries and copying data files. Thus only little work is needed to compile program, link library,
etc.
The typical local ‘Makefile’ looks as follows:

DIRS+=export

ifndef POTEMKIN

PROGS+=obj/export/zpipe

endif

EXPORT_MODS = \

pdf \

ps \

svg

obj/export/svg.o: CFLAGS+=$(XML_CFLAGS)

obj/export/zpipe: $(Z_LIBS)

$(LIBEXPORT):$(addsuffix .o,$(addprefix obj/export/,$(EXPORT_MODS)))

In every subdirectory ‘Makefile’, you should add the directory into the DIRS variable. If there
are executable programs, add them into the PROGS variable, with the full path inside the ‘obj’

6 The VRR Programmer’s Manual

directory. There are also three destination variables BINDIR, LIBDIR and DATADIR. Modifying
them causes different destination directory.

The source files dependencies are handled automatically by the compiler. During compilation,
the compiler dependency output is saved, processed with the build/mergedeps script and in-
cluded into the main ‘Makefile’.

Here are the ‘Makefile’ targets the programmer is encouraged to use.

• local: Do a local build to the directory ‘run’. This is also the default target.

• config: Just runs build/configure with default settings.

• final: Compile project with different directory settings for system installation.

• dust: Remove auxiliary files (backups, etc) created by various editors.

• clean: Do a cleanup by deleting ‘obj’ directory, binaries in ‘run/bin’ and ‘build/path.h’
path setting.

• distclean: Do better cleanup by also deleting reference documentation and configuration.

• totalclean: Remove everything deletable.

• doc: Run doxygen to create reference documentation, available at ‘doc/reference’.

• tags: Create ‘tags’ and ‘TAGS’ files to be used by popular editors.

2.4 Main programming language

VRR is written in pure C language according to C99 standard. For details about C99 standard
see http://vrr.ucw.cz/doc/c99.pdf.

In the Linux world, there is a wide-spread GCC compiler and the whole project has been
developed using in it. The default language standard, as set in the root ‘Makefile’, is C99 with
GNU extensions provided by gcc. However, VRR conforms to C99 and the compilation in pure
C99 can be enabled (see ‘Makefile’ header). Thus, any compiler correctly implementing C99
should be able to compile VRR.

There is natural question, why we chose the C language instead of some object-oriented language
like C++. Our answer is that C language is standard in the UNIX world, the C compilers
nowadays produces more efficient code and the C language give you better control of what
happens in your code. On the other hand, the C language imposes a lot of programmer’s effort
when implementing the object hierarchy, as we do in GEOMLIB or Kernel.

2.5 Scripting language

Scheme language is the scripting language of VRR. Also some small parts of VRR are written in
Scheme, mostly initialization routines and handy shortcuts, but also save/load mechanism.

Scheme is interpreted using Guile library, which is a wide-spread Scheme library designed to be
used as extension (scripting) language in other applications.

There are several reasons for using Scheme as a scripting language for a program like VRR:
Scheme is a dialect of Lisp featuring simplicity and clean design, which makes it pretty easy to
learn. Scheme is also often used in computer science curricula. Scheme has standard way to
express structured data and integrated parser and writer of that form.

To learn Scheme see the Structure and Interpretation of Computer Programs book (available
online at http://mitpress.mit.edu/sicp/full-text/book/book.html). The language stan-
dard can be found at http://www.schemers.org/Documents/Standards/R5RS/HTML/.

For more about Scheme cooperation with VRR see Chapter 13 [Scheme], page 104.

http://vrr.ucw.cz/doc/c99.pdf
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://www.schemers.org/Documents/Standards/R5RS/HTML/

Chapter 2: Development tools 7

2.6 External programs

There is number of libraries VRR utilizes, as well as some auxiliary external programs used
during compilation. The programs used to prepare VRR documentation are not listed here. For
that purpose see Chapter 14 [Documentation], page 107.

2.6.1 Libraries

VRR utilizes the following external libraries. Make sure the development variant of packages
(library headers) are installed on your system.

2.6.1.1 GTK+ library

Version at least 2.6.0 of GTK+ library is required. All fragments of GUI (see Chapter 7 [GUI],
page 58) are written under GTK+, as well as some rendering routines (see Chapter 8 [VCL],
page 75).

2.6.1.2 Guile library

Version at least 1.6 is required. Guile is an interpreter of the Scheme programming language.
See Chapter 13 [Scheme], page 104 for details how VRR utilizes Guile.

2.6.1.3 LibKPathSea library

The library’s fundamental purpose is to return a filename from a list of directories specified by
the user, similar to what shells do when looking up program names to execute. The purpose in
VRR is to search for TEX fonts and other files in various stages of TEX texts compilation and
rendering. See Section 12.1 [DVI import], page 102 for details.

2.6.1.4 FontConfig

Version at least 2.3.1 is required. FontConfig is a library designed to provide system-wide
font configuration, customization and application access. VRR uses FontConfig to search for
installed fonts to be used by standard text objects (see Chapter 9 [FONTLIB], page 91) and for
font substitution when requested font is not available (see Chapter 12 [Import], page 102 and
Chapter 13 [Scheme], page 104).

2.6.1.5 Zlib library

The Zlib library is a general purpose data compression library. In VRR, it is used in PDF export
routines to compress PDF data streams (see Section 11.2 [PDF export], page 101).

2.6.1.6 LibXML library

Version at least 2.0 is required. The LibXML library is used to parse XML files. As the SVG is
an XML data format, the library is used during SVG export and import. See Section 11.3 [SVG
export], page 101 and Section 12.3 [SVG import], page 102.

2.6.1.7 LibPaper library

The LibPaper library is optional, the configure script (see Section 2.3.2 [Configure script], page 5)
is able to configure VRR without LibPaper. The library is used in GUI for comfortable paper
format selection (see Chapter 7 [GUI], page 58).

2.6.1.8 FreeType library

FreeType is a software library that can be used by all kinds of applications to access the content
of font files. Version exactly 2.1.9 is required. The FreeType library is used in somewhat
nonstandard way and a copy of library sources is distributed along with VRR sources. The library
is used to do font rendering and various other font manipulation. See Chapter 9 [FONTLIB],
page 91.

8 The VRR Programmer’s Manual

2.6.1.9 Cairo library

The Cairo library is optional and must be explicitly enabled during installation. The Cairo
library can be used as alternative drawing backend in VCL (see Chapter 8 [VCL], page 75). It
brings anti-aliased lines and alpha-blending toVRR.

2.6.2 Other tools

2.6.2.1 GNU make

Project building utility. See Section 2.3.3 [Makefiles], page 5.

2.6.2.2 Autoconf

Autoconf is a tool used to build ‘build/configure’ script. See Section 2.3.2 [Configure script],
page 5.

2.6.2.3 GNU awk

The gawk is used only during compilation in the “snarfing” process to build Scheme bindings
from C sources. See Chapter 13 [Scheme], page 104 for details.

2.6.2.4 Perl

Perl is used only in the ‘build/mergedeps’ script to maintain Makefile dependence informations
for project building. See Section 2.3 [Project building system], page 4.

2.6.2.5 pdfTEX

TEX is used to compile TEX text objects (see Chapter 6 [Kernel], page 41). XXX: podrobnejsi
odkaz Actually, pdfTEX himself is not used, only the vector versions of TEX fonts and libkpath-
sea search databases are needed. However, there does not exist a separate vector TEX fonts
package, so VRR requires whole pdfTEX, which includes the standard TEX by default.

Chapter 3: Project structure overview 9

3 Project structure overview

VRR consists of these main parts.

They are described in details in the following chapters. Here we supply a short overview of every
part.

3.1 VRRLIB

The basic modules, intended to be used by the whole project. There are things like logging and
debugging, memory allocation and general data structures.

3.2 GEOMLIB

GEOMLIB is the geometrical library of VRR project. It implements many numerical algorithms
with Bézier curves, general geometrical objects, planar search data structures and many other
features. From the beginning, it was designed as a standalone library with no other dependency
inside VRR (with the exception of the VRRLIB).

3.3 Kernel

Kernel is the core of VRR project, implementing main VRR data structures, graphic objects,
transaction mechanism, undo history and also many computations with graphic objects.

3.4 GUI

Graphical User Interface communicates with the user. GUI uses the services of Kernel to ma-
nipulate with objects, maintain data structures and perform various operations, and with VCL
to render them on screen. It also calls other parts of VRR like export and import modules. GUI
heavily uses the GTK+ library.

3.5 VCL

VRR Canvas Library (VCL) is the set of low-level rendering routines, as well as high-level graph-
ical engine, containing various object expansion caching. Most of the low-level algorithms are
hand-written, the rest is performed by the GDK library, part of GTK+, or optionally by the
Cairo library.

3.6 FONTLIB

FONTLIB is the font rendering and manipulation library. It contains support for rendering
PostScript Type1 fonts and TrueTypes, computing text bounding boxes and converting font
among these formats.

3.7 Plugins

This is the VRR plugin mechanism, allowing a programmer to write separated modules (which
are actually ELF dynamic libraries), that is possible to load (and sometimes also unload) in
runtime. In this chapter we give the interface description, as well as some tips & tricks.

3.8 Export

VRR is able to fully export pictures in PostScript, Encapsulated PostScript, PDF (conforming
to level 1.5) and SVG. PostScript and PDF export routines are hand-written, SVG export uses
the LibXML library to handle the native SVG’s XML format.

10 The VRR Programmer’s Manual

3.9 Import

VRR supports importing large subset of the SVG image data format. There is also experimental
support for a subset of the IPE version 5.0 native image format.

3.10 Scheme

VRR has an integrated scripting language. It is based on the GUILE library, a Scheme language
interpret. The connections between VRR and GUILE are described in this chapter.

Chapter 4: VRRLIB 11

4 VRRLIB

VRRLIB is the basic VRR library and is used by all VRR modules. Linking binaries and libraries
with VRRLIB is automatical and you don’t need to specify it manually in the Makefile. VRRLIB
resides in the ‘lib’ directory.

4.1 Main project header

Every C source file and header must include the file ‘lib/lib.h’. This file contains basic
definitions, datatypes and functions, which should be common for all modules.
The programmer can be sure that he gets the following types always defined correctly (by the
build/configure script, see Section 2.3.2 [Configure script], page 5).
• byte: Exactly 8 bits, unsigned.
• u8: Dtto.
• sbyte: Exactly 8 bits, signed.
• s8: Dtto.
• word: Exactly 16 bits, unsigned.
• sword: Exactly 16 bits, signed.
• u16: Exactly 16 bits, unsigned.
• s16: Exactly 16 bits, signed.
• u32: Exactly 32 bits, unsigned.
• s32: Exactly 32 bits, signed.
• uns: At least 32 bits.
• u64: Exactly 64 bits, unsigned.
• s64: Exactly 64 bits, signed.
• addr_int_t: For converting pointers into integers.
• real: Preferred floating-point type

In the header there also useful macros (for example for handling complicated structs), memory
allocation prototypes (see Section 4.3 [Memory allocation], page 12) and logging and debugging
function prototypes (see Section 4.2 [Logging and debugging], page 11).

4.2 Logging and debugging

This stuff is implemented in the ‘lib/log.c’ module and by default prototyped in ‘lib/lib.h’.
There are two levels of debugging. Global debugging is turned on if there is the macro DEBUG
defined. The local debugging should be turned on and off for every module separately by defining
the macro LOCAL_DEBUG.
These functions should be used for debugging and informative printing purposes, the format is
the same as in the printf function.
• msg: Print message to stdout.
• err: Print message to stderr.
• die: Print message to stderr and abort the process.
• DBG: Macro doing the same job as msg, but only if LOCAL_DEBUG is defined.
• DBGLN: Dtto, but with source line number prepended.
• BUG: Abort process.

The wide usage of ASSERT macro is recommended.

12 The VRR Programmer’s Manual

4.3 Memory allocation

For the memory allocation purposes, the programmer must use the following allocator interface
which is prototyped in ‘lib/lib.h’ (see Section 4.1 [Main project header], page 11). The
functions are protected against low memory resulting in process abort on failure and having the
same meaning as the original without the x prepended. We mention functions like xmalloc,
xfree, xrealloc, etc., consult ‘lib/lib.h’ for details.

There is also a “small” memory allocator, intended to be used when frequently allocating
small memory pieces. See the ‘lib/smalloc.h’ header for interface. The implementation is
in ‘lib/smalloc.c’.

4.4 Sorter

The array sorter resides in ‘lib/arraysort.h’. This is not a normal header file, it is a gen-
erator of sorting routines. Each time you include it with parameters set in the correspond-
ing preprocessor macros, it generates an array sorter with the parameters given. Consult the
‘lib/arraysort.h’ header for details. The actual sorting algorithm used is a clever modification
of the well-known QuickSort.

The main reason of implementing general sorting routines like this is that it is completely
callback-free, thus speeding array sorting considerably.

4.5 Data structures

VRRLIB implements several very useful general data structures.

4.5.1 Hash table

There are two universal generators of hash table routines, one in ‘lib/sht.h’ and one in
‘lib/hashtable.h’. These are not normal header files, these are generators of hash tables.
After the inclusion, a unique set of hashing routines is generated, with properties depending on
symbols defined before the inclusion. See the files’ header for details how to use it.

The reason for implementing general hashing routines like this is that it is completely callback-
free, thus speeding them considerably. Moreover, it gives the programmer a control of what
routines are generated and what exactly they shall do.

4.5.2 AVL-Tree

The VRRLIB implements the AVL-Tree data structure for effective manipulation with ordered
sets. In each node of this binary tree, the height of the left and the right subtrees differ at most
by one. It can be easily prooved that the height of such a tree is O(log n).
The following example describes a basic usage:

/* normal header file */

#include "lib/avltree.h"

/* node structure (1) */

struct mynode {

struct avlnode avlnode;

int key;

};

/* code generator */

#define AVLTREE_TYPE int

#define AVLTREE_KEY(x) ((mynode *)x)->key

#include "lib/avltreegen.h"

int main(void)

{

Chapter 4: VRRLIB 13

struct avltree tree;

struct mynode node;

/* structure initialization */

avltree_init(&tree);

/* insertion example (2) */

node.key = 100;

avltree_insert(&tree, &node.avlnode);

/* ... */

}

Two header files have to be included. The first (‘lib/avltree.h’) is a classical header file with
independent structure definitions and function headers. The second one (‘lib/avltreegen.h’)
is somewhat special. Is reads macros as parameters to generate a specialized code of some
functions. The full description of supported macros can be found in the first header file.
Each inserted item must contain the avlnode as a substructure (1) and is accessed through its
address (2) in AVL-Tree routines. For each tree, there must be also one instance of the avltree
structure with a pointer to the root.
The implementation includes many standard functions for ordered sets like data insertion, dele-
tion or key searching with usually logarithmic time complexity. If no key is given in the macro
parameters, no searching routines are generated.

4.5.3 Cache

The caching mechanism in VRR is based on a limited amount of available memory with LRU
(the least recently used) deallocation. Limits of the cache size can be set globally in the user
settings.
To share the cache between several independent parts of the project, where each part can have
a special optimized allocator, it is accessed through the following general interface. Every part
of VRR using the global shared cache is called cache user. Users are identified with a unique
number and a pointer to a deallocation routine. When someone cannot allocate a new block
because the cache is full, the least recently used block is found and depending on the stored
identification number, an appropriate deallocation routine is called. This is repeated until there
is enough free space in the cache to create the new block.
All cached blocks are held in a double-linked list structure. This allows all operations to be done
in a constant time. Items in the list are sorted according to the time of last access. Each access
to one of the allocated blocks must be followed with a call to cache_touch to move it to the
head of the list.
A simple self-descriptive example of the cache usage can be found in the file
‘lib/cache_example.c’ and a more detailed description in the file ‘lib/cache.h’.

4.5.4 Linked lists

A very comfortable interface for working with general linked lists is implemented. In every
structure you would like to include in a linked list, define a special node attribute. During
list operations, the structure is referenced only via this attribute. There are functions for
inserting new nodes at various positions, walks through the whole linked list, deletion, etc.
See ‘lib/slists.h’, ‘lib/clists.h’ (a circular modification) and ‘lib/cclists.h’ (a counted
circular modification) for details. The usage is similar to the AVL-trees (see Section 4.5.2 [AVL-
Tree], page 12).

4.5.5 Growing array

The growing array is a dynamically allocated array structure that keeps monitoring the access
and when there is a request for an index beyond the actual array size, the array is automatically

14 The VRR Programmer’s Manual

resized. The file ‘lib/garr.h’ can be used as a function generator. There is a support for
passing growing arrays as function arguments comfortably. See ‘lib/garr.h’ for details.

4.6 Miscellanea

There is also a simple prime number testing and generating defined in ‘lib/prime.h’ which is
primarily used by the hash table implementation (see Section 4.5.1 [Hash table], page 12).

Chapter 5: GEOMLIB 15

5 GEOMLIB

5.1 Overview

GEOMLIB is the geometrical library of the VRR project.

5.1.1 Purpose

Geometrical library (GEOMLIB) consists of the following modules:

• General numerical algorithms such as polynomial solver or linear system solver.

• Simple geometrical computation with points, vectors and affine transformations.

• General geometrical data structures such as R*-Tree.

• Objective programming emulation for C99 standard.

• Hierarchy of geometrical classes, especially various curve types. Computations can be ac-
cessed through (virtual) methods.

The library is almost independent part of VRR project and uses only VRRLIB definitions. See
Chapter 4 [VRRLIB], page 11 for description of VRRLIB.

5.1.2 Error handling

Many functions in GEOMLIB can fail because of floating point error or a different reason. Each
error type is described by its unique error code (a negative integer constant), for example GEOM_
ERR_NUMERIC. Full list of error codes can be found in the file ‘geomlib/err.h’.

Most of possibly failing routines follow these calling conventions:

• If a function returns integer type, zero or positive result means success, while negative result
means one of defined error codes.

• If a function returns floating point type, it succeedes, when result is finite number. It fails
otherwise.

• If a function returning pointer type fails, result is NULL.

In some cases the error code is stored in global variable geom_errno. To simplify long error
testing and code debugging, there are many basic macros defined in the file ‘geomlib/base.h’.
For historical reasons, some older parts of GEOMLIB do not return predefined integer error codes
and only return undefined negative values.

5.1.3 Floating-point arithmetic

The library mainly uses real floating-point type defined in VRRLIB, which can be of float or
double precision. Some more ambitious computations (i.e. polynomial solver) are fixed to the
double precision. NaN (not a number) or infinities are usually considered as invalid values and
produce the GEOM_ERR_NUMERIC error.

5.1.4 Functions input and output

If nothing else is said in function description, all parameters must contain valid data (floating-
point types must contain finite numbers, pointers must not be NULL and structures must agree
with their definitions).

Successfully finished functions always return valid or explicitly described results. Pointers to
resulting structures should not overlap with other parameters. The result of failed function is
undefined.

16 The VRR Programmer’s Manual

5.1.5 Header files

The main GEOMLIB header is ‘geomlib/geomlib.h’. By including this file, all structures,
functions and macros can be used. It is also possible to include only a smaller subset of definitions
by including the appropriate header file. There are no inclusion dependencies, because necessary
headers are used recursively. Most of identifiers in GEOMLIB starts with geom_ or GEOM_ prefix.
Some shorter internal aliases may be enabled by defining macro GEOM_SOURCE before the first
header inclusion.

5.1.6 Self-testing code

GEOMLIB contains a script, which should help to find errors in the library implementation
by applying some automated random tests. These testing routines are located in the file
‘geomlib/geomlibtest.c’ and are compiled together with GEOMLIB. There are many tests
of object-oriented programming emulation and correctness of numerical algorithms. Floating
point results are tested to a small epsilon constant.

5.2 Numerical algorithms

5.2.1 Polynomials in power form

GEOMLIB contains a general polynomial solver which is used in most of curves computations
(see Section 5.6.1 [Rational Bezier curves], page 27).
The power form of the general polynomial P (t) is

P (t) =
n∑

i=0

ait
i,

where:
• n ≥ 0 is called the degree of the polynomial.
• ai are called the coefficients of the polynomial.
• n = 0 or an 6= 0.

Each nonzero polynomial of degree n has at most n real roots (P (tj) = 0). The following
function finds all these roots in the increasing order:

int geom_polynomial_solve(uns degree, double *coef,

uns flags, double *result);

To achieve a good numerical stability, all computations work in the double precision. Possible
options to the algorithm can be passed in flags parameter as an OR combination of the following
bits:

GEOM_SOLVE_LEFT_ONLY
Returns only the minimal root if exists.

GEOM_SOLVE_UNIT_INTERVAL
Returns only the roots in the closed interval [0, 1].

GEOM_SOLVE_MULTIPLICITY
Returns each root with multiplicity k as k identical entries in the resulting array.

We have implemented closed form solvers up to degree 4 (including), because they are faster then
the general iterative solver designed for higher degrees. Mathematical basis of these algorithms
can be found at http://mathworld.wolfram.com/ (Cubic Equation, Quartic Equation).
Roots of the degree 5 or higher polynomials can be found with Jenkins-Traub iterative algorithm.
We have translated the C++ implementation from http://www.crbond.com/ to C99 standard.
Detailed description of the algorithm is beyound the scope of this documentation, but some brief
comments can be found in the source file ‘geomlib/polynomial.c’.

http://mathworld.wolfram.com/
http://www.crbond.com/

Chapter 5: GEOMLIB 17

5.2.2 Polynomials in Bernstein form

The n + 1 Bernstein basis polynomials of degree n are defined as

Bn
i (t) =

(
n

i

)
ti(1− t)n−i, i = 0, . . . , n.

A linear combination of Bernstein basis polynomials,

P (t) =
n∑

i=0

αiB
n
i (t),

is called a Bernstein polynomial or polynomial in Bernstein form of degree n. The coefficients
αi are called Bernstein coefficients or Bézier coefficients. Every polynomial in power form can
be written in Bernstein form and vice-versa.

GEOMLIB widely use Bernstein polynomials because the base curve type (Section 5.6.1 [Ra-
tional Bezier curves], page 27) contains Bernstein basis polynomials in its definition. The file
‘geomlib/bernstein.h’ defines routines similar to the routines in ‘geomlib/polynomial.h’ to
solve the polynomials in Bernstein form and conversion routines between power and Bernstein
form. There are also another useful operators such as multiplication, addition or derivation of
the polynomials.

Implementation of the Bernstein polynomial solver is very simple. It converts the polynomial
to power form and then executes previously described solver (see Section 5.2.1 [Polynomials
in power form], page 16). In some situations (especially in higher degrees) it would be more
effective and geometrically stable to solve Bernstein polynomials and Bézier curve problems with
specialized algorithms, but it is left for the future development of VRR project.

The most important functions in the header file ‘geomlib/bernstein.h’ are:
/* Conversion of a given polynomial from Bernstein form to power form. */

int geom_bernstein_to_power(uns degree, double *bernstein, double *power);

/* Conversion of a given polynomial from power form to Bernstein form. */

int geom_power_to_bernstein(uns degree, double *power, double *bernstein);

/* Finds all roots of a given polynomial in Bernstein form.

Meaning of flags is the same as in geom_polynomial_solve. */

int geom_bernstein_solve(uns degree, double *coef,

uns flags, double *result);

5.2.3 Matrix routines

Geometrical library implements algorithms for matrix manipulation. The main feature is a
linear equations system solver, using PLU factorization. Linear systems are not used very often
in the project and appears only in computations with conic sections.

PLU factorization is the factorization of rectangular matrix A to a permutation matrix P , a
lower triangular matrix L with ones on diagonal and an upper trapezoidal matrix U such that
A = P · L · U , U has the same size as A. P and L are square matrices with as many rows
as A. The implementation of this algorithm by Gaussian elimination can be found in the file
‘geomlib/matrix.c’.

There are also routines solving the matrix kernel, rank, inversion or multiplication of two ma-
trices.

5.2.4 Points and vectors
Planar points and vectors can be stored in similar structures:

18 The VRR Programmer’s Manual

struct geom_point {

real x, y;

};

struct geom_vector {

real dx, dy;

};

It is safe to type-cast between these structures any time. Some simple manipulation routines and
constants are defined in ‘geomlib/vector.h’. Any finite values of coordinates are supported in
GEOMLIB but in some specific situations, extremely small or large values can lead to numerical
problems.

5.2.5 Affine transformations

Every planar affine transformation
x∗ = a · x + b · y + c,

y∗ = d · x + e · y + f,

can be expressed as a square matrix such thatx∗

y∗

0

 =

 a b c
d e f
0 0 1

 ·
x

y
0

 .

5.2.5.1 Transformation structure

GEOMLIB stores transformation matrices in the structure
struct geom_transform {

uns flags; /* special flags */

real coef[2][3]; /* matrix coefficients */

};

where a b c
d e f
0 0 1

 =

 coef[0][0] coef[0][1] coef[0][2]
coef[1][0] coef[1][1] coef[1][2]

0 0 1

 .

To speed up some operations with special cases of transformations, the flags entry may have
set the following bits set:

GEOM_TRANSFORM_IDENTITY
Matrix expresses the identity transformation.

GEOM_TRANSFORM_SIMILAR
Matrix expresses a similarity.

These flags can be set up during the structure creation or manually by the user. There is no
implemented numerical algorithm to detect similarities.
The list of implemented functions with a brief description can be found in the file
‘geomlib/transform.h’. There are functions to initialize the most useful affine
transformations. The following routine is used to merge affine transformations:

int geom_transform_merge(struct geom_transform *t1,

struct geom_transform *t2,

struct geom_transform *t);

Let T1 and T2 be matrices of some affine transformations. Then we can compute the matrix of
the compound transformation by matrix multiplication T = T2 ·T1. The code also sets the GEOM_
TRANSFORM_IDENTITY and GEOM_TRANSFORM_SIMILAR flags in the resulting structure if they can
be easily determined.
Another implemented methods are for example evaluations of the inverse matrix and the rank
or detection of the fixed point of affine transformation.

Chapter 5: GEOMLIB 19

5.2.5.2 Two-directional transformation structure

The following structure is used to optimize performance and increase the numerical stability of
mixed manipulation with compound transformations and inversions.

struct geom_transform2 {

struct geom_transform primary; /* primary matrix */

struct geom_transform inverted; /* inverse matrix */

};

The header file ‘geomlib/transform2.h’ defines operations similar to the operations in the
file ‘geomlib/transform.h’, that work with this extended structure and update the inversion
transformation matrix along with the primary matrix.

5.3 R*-Tree

Source: The R*-Tree: An efficient and Robust Access Method for Points and Rectangles (1990)
– Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernard Seeger.
This data structure is a popular method to localize rectangular objects in two (or generally
more) dimensional space. In VRR, it is used for effective localization of geometrical objects
near to a given mouse-click (see Section 7.5.4 [Snap], page 70), or to find all objects in a given
rectangular area (view drawing, rectangular selection).
R*-Tree is one of the variants to data structure called R-Tree. Each leaf node represents one
object within a given bounding box (rectangle overlapping the entire object). Internal nodes
contain information about the smallest common bounding boxes of all their children. This
arrangement allows us to walk the tree from root to leaves while ignoring large unimportant
plane areas (subtrees). R-Tree variants differ by methods of grouping nodes to subtrees.
R*-Tree tree is based on a heuristic optimization and uses combination of several optimization
criteria (described in [Data insertion], page 20) to arrange objects to groups and build a balanced
tree over them. The data structure is fully dynamic. Insertions, deletions, updates and queries
can be mixed and no periodic global reorganization is required.

5.3.1 Structures

We have used balanced (A,B)-Tree (A=GEOM_RTREE_MIN, B=GEOM_RTREE_MAX) to store the
hierarchy. The user should define one instance of geom_rtree for each existing R*-Tree and
include one geom_rtree_obj in each inserted object structure. Internal nodes are allocated and
freed automatically. Structures were designed to minimize space requirements:

/* R*-Tree main structure */

struct geom_rtree {

struct geom_rtree_node *root;

/* pointer to root node (NULL if tree is empty) */

clist lquery;

/* list of dynamic rectangular queries */

};

/* R*-Tree leaf node */

struct geom_rtree_obj {

struct geom_rectangle bbox;

/* rectangle enclosing entire geometrical object */

struct geom_rtree_node *parent;

/* pointer to parent tree node */

};

/* R*-Tree internal node */

struct geom_rtree_node {

struct geom_rectangle bbox;

/* smallest common bounding box of node children */

byte count;

/* number of children */

20 The VRR Programmer’s Manual

byte height;

/* tree level (0 for internal nodes containing leaves) */

struct geom_rtree_node *parent;

/* parent node (NULL in root node) */

struct geom_rtree_node *child[GEOM_RTREE_MAX + 1];

/* child-pointers (internal nodes or leaves) */

};

5.3.2 Data insertion

In standard (A,B)-Tree, after the node is inserted, overfull nodes (i.e. the number of children
exceeds B) on the trace from the newly inserted leaf to the root are split. R*-Tree uses following
algorithm to find good splits. Along each axis (X and Y), the entries are first sorted by the lower
value, then sorted by the upper value of their bounding boxes. For each sort all distributions of
entries into two (A,B)-tree nodes are determined.
For each distribution the goodness values are computed:

area-value area[bbox(first group)] + area[bbox(second group)]

margin-value
margin[bbox(first group)] + margin[bbox(second group)]

overlap-value
area[intersection of bbox(first group) and bbox(second group)]

Depending on these goodness values the final distribution of the entries is determined.

Algorithm Split

(S1) Determine the axis, to which the split is performed.
(S1a) For each axis: Sort the entries by the lower then by the upper value of their rectangles
and determine all distributions as described above. Compute S, the sum of all margin-values of
the different distributions.
(S1b) Choose the axis with the minimum S as split axis.
(S2) Along the chosen split axis, choose the distribution with the minimum overlap-value. Re-
solve ties by choosing the distribution with minimum area-value.
(S3) Distribute the entries into two groups.

Because R*-Tree is nondeterministic in allocating the entries onto the nodes, it suffers from its old
entries. Data rectangles inserted during the early growth of the structure may have introduced
directory rectangles, which are not suitable to guarantee a good heuristic. Reorganization during
splits is only local optimization.
To achieve better performance, some nodes are deleted and reinserted during the insertion
routine. The Whole algorithm is described below. To insert a new entry, the following routine
is called with the leaf level as a parameter. All used sub-algorithms are described below.

Algorithm Insert

(I1) Invoke ChooseSubtree (CS1), with the level as a parameter, to find an appropriate node N ,
where to place the new entry E.
(I2) If N has less than GEOM_RTREE_MAX entries, accommodate E in N .
If N has GEOM_RTREE_MAX entries, invoke OverflowTreatment (OT) with the level of N as a
parameter (for Reinsertion or split).
(I3) If OverflowTreatment was called and Split was performed, propagate OverflowTreatment
upwards if necessary.
If it caused a split of the root, create a new root.
(I4) Adjust all covering rectangles in the insertion path.

Chapter 5: GEOMLIB 21

Algorithm Choosesubtree

(CS1) Set N to be the root.
(CS2) If N is in desired tree level, return N .
If the child-pointers in N point to leaves [determine the minimum overlap cost], choose the entry
in N whose rectangle needs the least overlap enlargement to include the new data rectangle.
Resolve ties primary by choosing the entry whose rectangle needs least area enlargement, sec-
ondary the entry with the rectangle of smallest area.
If the child-pointers in N do not point to leaves [determine the minimum area cost], choose
the entry in N whose rectangle needs least area enlargement to include the new data rectangle.
Resolve ties by choosing the entry with the rectangle of smallest area.
(CS3) Set N to be the child-node pointer of the chosen entry and repeat from (CS2).

Algorithm Overflow treatment

(OT) If the level is not the root level and this is the first call of overflow treatment in the given
level during the insertion of one data rectangle, then invoke Reinsert (RI1) else invoke Split
(S1).

Algorithm Reinsert

(RI1) For all GEOM_RTREE_MAX+1 entries of a node N , compute the distance between the centers
of their rectangles and the center of the bounding rectangle of N .
(RI2) Sort the entries in decreasing order of their distances computed in (RI1).
(RI3) Remove the first GEOM_RTREE_REINSERT entries from N and adjust the bounding rectangle
of N .
(RI4) In the sort, defined in (RI2), starting with the maximum distance, invoke Insert (I1) to
reinsert the entries.

5.3.3 Data deletion

Deletion of a given entry uses the same routines as the previously described insertion. If the
removed leaf causes, that the number of parent child-pointers would decrease below GEOM_RTREE_
MIN, the parent node is recursively removed and all remaining child-pointers are reinserted to
the same tree level.

5.3.4 Data updates

The modification of already inserted items is implemented by simple calls of data insertion
and deletion. It would be possible to improve the performance, especially for relatively small
changes.

5.3.5 Rectangular queries

R*-Tree is an especially good heuristic to find objects, that fall into a given rectangular (or
point) area. The algorithm is very simple. It starts in the root node and recursively descents to
lower levels while cutting off whole subtrees with improper bounding boxes.
The following macros in ‘geomlib/rtree.h’ implement rectangular queries for a given R*-Tree:

GEOM_RTREE_RECT_INTERSECT_QUERY_BEGIN(unique_prefix, rtree, rect, object) {

/* executed for each object, whose bounding rectangle

intersects with query rectangle */

} GEOM_RTREE_RECT_INTERSECT_QUERY_END;

GEOM_RTREE_RECT_ENCLOSE_QUERY_BEGIN(unique_prefix, rtree, rect, object) {

/* executed for each object, whose bounding rectangle

is entirely enclosed to query rectangle */

} GEOM_RTREE_RECT_ENCLOSE_QUERY_END;

22 The VRR Programmer’s Manual

GEOM_RTREE_POINT_QUERY_BEGIN(unique_prefix, rtree, point, object) {

/* executed for each object, whose bounding rectangle

contains query point */

} GEOM_RTREE_POINT_QUERY_END;

5.3.6 Dynamic rectangular queries

Dynamic queries can exist for an arbitrary long period of time and informs the user about
changes made in a given rectangular area via callback functions.
New query may be created by geom_rtree_query_init(query, rtree, rect, show, hide,
update) and destroyed by geom_rtree_query_destroy(query). The following callbacks are
supported:

show Informs user about every object, that appeared in the query area. This may oc-
cur during dynamic query creation, insertion of a new entry to R*-Tree or when
previously invisible entry is moved to the watched area.

hide Informs user about every object, that disappeared from the query area. This may
occur when the query is destroyed, an entry is removed from R*-Tree or previously
visible entry is moved outside the query area.

update This callback is executed only when previously visible object changed its bounding
box, but remains in the query area.

5.3.7 Center pass algorithm

The center pass algorithm enables the user to loop items stored to R*-Tree in order of increasing
distance from a given center point. If the heuristic builds an effective planar hierarchy, it offers
a sub-linear time complexity to find a limited number of nearest entries. This feature is used in
GUI to localize geometrical objects near a given mouse-click (see Section 7.5.4 [Snap], page 70
for usage details).
The implementation is located in the VRR Kernel (see Chapter 6 [Kernel], page 41), but the
description thematically belongs to this section of the Programmer’s Manual.
At first, we briefly describe the algorithm, how to pass objects sorted by the distance of their
bounding boxes. Let S be a set of disjoint subtrees with evaluated distance of their root’s
bounding box to the center point. Initially, the set S contains only one item representing the
whole R*-Tree. The algorithm works in a cycle. At each step of the cycle, the first entry is
removed from the set S. If it is a leaf node, the incident object is the nearest of all contained
in the set S. If the entry is not a leaf node, then we split the entry (subtree) to set of its root’s
children subtrees and insert them back to the set S. This procedure is repeated until we have
passed the required number of nearest objects or the set S is empty.
This algorithm can be easily extended to consider the exact distance of the objects to the center
point instead only of bounding boxes. We only need to add a next level to the hierarchy. Every
leaf node reached in the main cycle is reinserted back to set S with its exact object distance.
The set S is implemented by the heap data structure. Minimum in the heap can be found and
removed in O(log n) time as well as a new item can be inserted.
Supported objects by the center pass code are all Kernel’s geometrical objects. See the file
‘kernel/rtree.c’ for implementation details.

5.4 Objective programming

5.4.1 Introduction

GEOMLIB uses principles of object-oriented programming to simplify hierarchy and common
attributes of curve types. And because VRR is written in pure C language, the objective envi-
ronment with hierarchy of classes had to be emulated.

Chapter 5: GEOMLIB 23

Class is a type with defined virtual methods and data fields. Each class has its unique identi-
fication number (ID) and a table with pointers to virtual methods (VMT). Class can have one
class as an ancestor. All virtual methods of ancestors are derived to descendant class and can
be found at the same index of its VMT. Descendant class can replace derived pointer to virtual
method or define new virtual methods. VMT also contains some useful information as class ID,
instance size, class name and pointer to ancestor class VMT. Each class defines the format of
its instances. The ancestor instance structure is substructure of all its descendants. The class
must be directly or indirectly derived from a special class o.

Instance of a given class is an allocated structure with corresponding format. Structure contains
header with class ID (used to determine pointer to VMT) and space to store instance data. There
remain 3 bytes (to align the structure), that may be used by derived classed.

5.4.2 Definition of a new class

Each class xyz must define two structures:

struct geom_xyz
Instance structure. Contains ancestor instance structure as the header.

struct geom_xyz_class
Table of virtual methods. Must contain ancestor VMT structure as the header.
There is one global variable geom_xyz_class of that type.

Typical example of class xyz definition, which is descendant of base class o:
/* definition of instance structure */

struct geom_xyz {

struct geom_o o; /* ancestor data */

int var; /* new data, can be used by any xyz descendants */

};

/* used to define new virtual methods in VMT structure */

#define geom_xyz_VMT geom_o_VMT \

void (*func)(struct geom_xyz *self);

/* used to replace derived or initialize

new pointers to virtual methods in VMT */

#define geom_xyz_INIT geom_o_INIT \

.func = &geom_xyz_func,

/* structures definition (should be in .h file) */

GEOM_CLASS_HEAD(xyz, o);

void geom_xyz_func(struct geom_xyz *self)

{

/* ... virtual method implementation */

}

/* global variables definition (should be in .c file) */

GEOM_CLASS_DEF(xyz);

void main() {

/* ... */

/* VMT initialization, unique class ID is generated */

GEOM_CLASS_INIT(xyz);

/* instances of xyz class can be created from now */

}

5.4.3 Initialization and destruction

Each instance must be initialized before a call to virtual method. During the initialization,
class ID is set and the rest of the structure is filled by zeros. Some classes need to initialize

24 The VRR Programmer’s Manual

additional data in the cleared structure before most methods can work. Functions, that modify
the instance from the cleared stated to the valid one, are sometimes called constructors.

The cleanup is done by the virtual destructor defined in class o. This method should destroy
all internal structures such as additionally allocated memory.

Example:

/* memory allocation for a new instance */

struct geom_abc a;

/* instance initialization */

geom_instance_init(&a, GEOM_CLASS(abc));

/* now, instance data are filled by zeros */

/* ... */

/* call to virtual destructor */

geom_instance_destroy(&a);

5.4.4 Virtual methods

Entries in the instance VMT can be accessed by the macro GEOM_INSTANCE_VMT(instance,
class, entry). This macro reads the class ID from instance header, looks to table of initialized
classes to retrieve address of the incident VMT and then returns the desired entry. Instance
must be derived from the given class in the macro parameter and that class must contain the
given entry in its VMT.

Example:

struct geom_abc a;

/* ... */

/* call to virtual method */

GEOM_INSTANCE_VMT(&a, abc, func)(&a);

5.4.5 Class hierarchy
• o

• item

• group

• path

• fpath

• curve

• bezier curve

• segment

• elliptic arc

• point item

• callback item

Chapter 5: GEOMLIB 25

geom o

base class

geom bezier

rational Bézier curve

geom elliptic arc

elliptic arc

geom segment

segment

geom item

abstract curve class

geom group

group of items

geom curve

elementary curve

geom path

compound path

geom fpath

path with allocator

geom point item

point curve

geom callback item

user-defined curve

Picture 1: Class hierarchy.

5.5 Common curves interface

5.5.1 Items and groups

The item class extends o class by:
• Grouping support. Each item can be inserted to any group or descendant instance (there

are some exceptions).
• Debugging routines – assertions and data dumping.
• Abstract interface to planar curves.

The group class extends item class by ordered set of child items. There are many routines for
manipulation with the set in the file ‘geomlib/group.h’. The implementation uses simple cir-
cular linked lists, but it is prepared to be replaced by a balanced tree in the future development.
Single item may be inserted to at most one group at the time, so all existing items and groups
generally form a set of trees (forest). Some of that trees are used in VRR Kernel (see Chap-
ter 6 [Kernel], page 41) to describe hierarchy of geometrical objects (GOs) in top level objects
(TLOs). For more detailed description of GEOMLIB grouping usage in the kernel, see kernel
documentation. Other trees can be used for example as temporary paths.

5.5.2 Curves

Items and groups define a common interface abstract to all supported curves in plane. There
are many virtual methods that must or may be redefined in derived classes.
To simplify addition of new curve types and geometrical routines to GEOMLIB there is only a
small subset of required methods, that must be implemented in each descendant. If all of them
are written correctly, other methods can be automatically emulated with a general code.
This mechanism is achieved by the following rules:

26 The VRR Programmer’s Manual

• Each curve in GEOMLIB can be converted to a finite sequence of connected rational Bézier
curves. Such sequence is called a Bézier expansion of the curve.

• All curve types implement conversions between their base parametrization (TIME) and
parametrization of their Bézier expansion (BTIME).

• All geometrical functions are implemented for rational Bézier curves.
• All geometrical functions are implemented for compound paths that are used to store Bézier

expansions.
• There is a general implementation for each geometric function, which can convert the com-

putation to Bézier expansion.

When user calls a geometrical method without a special implementation, a general routine is
executed. At first, this method computes a Bézier expansion of the curve and converts all input
TIME parameters to BTIME. After that the geometrical task is solved by the code for paths and
Bézier curves. If there are curve parameters in the result, they are finally converted back from
BTIME to TIME parametrization.
Some geometrical problems would be impossible to solve only by Bézier expansion and
parametrization conversion routines. One of them would be the splitting of the curve in a
given parameter to a pair of curves of the same type. In the current version of the VRR project,
there are no such fully implemented functions, but they will probably appear in future releases.
For some curve types, the computation of Bézier expansions is quite slow in the majority of
geometrical methods. To increase performance of repeated requests, entire expansion paths
are stored in VRR’s cache. Full description of the caching mechanism can be found in the file
‘geomlib/cache.c’ and Section 4.5.3 [Cache], page 13.
Implementation of the common curves interface is divided in the following files:

‘geomlib/item.?’
The item class including abstract geometrical methods.

‘geomlib/group.?’
The group class with ordered sets interface.

‘geomlib/curve.?’
General implementation of geometrical methods and the curve class definition (see
Section 5.6 [Elementary curves], page 27).

‘geomlib/bezier.h’, ‘geomlib/bez*.c’
Rational Bézier curves implementation.

‘geomlib/path.?’, ‘geomlib/fpath.?’, ‘geomlib/cache.?’
Bézier expansions.

5.5.3 Parametrizations

Each curve can be expressed with infinite number of parametric forms. This is each continuous
function from a real closed interval to the plane with the curve as the image. GEOMLIB defines
four parametrizations for its curve types. Some of them may be identical.

5.5.3.1 TIME

This is the base parametrization for each type and is used in most of computations. Therefore, its
definition should allow the developer to implement a fast code. Interval of TIME parametrization
may be generally [0, l], l ≥ 0, but for elementary curves it is restricted to unit interval [0, 1].
GEOMLIB includes direct conversion routines between TIME and each other parametrization.

5.5.3.2 BTIME

BTIME is defined as TIME parametrization of the Bézier expansion. The interval is [0, n], where
n is the number of rational Bézier curves in the expansion.

Chapter 5: GEOMLIB 27

5.5.3.3 ATIME

ATIME represents Euclidean arc length parametrization. The interval is [0, a], where a is the
Euclidean arc length of the curve. Parameter t corresponds to the point at the arc distance of
t from the starting point.

5.5.3.4 RATIME

RATIME is called relative Euclidean arc length parametrization. This is exactly the previously
defined ATIME parametrization linearly scaled to the unit interval [0, 1].

5.5.4 Geometrical methods

Full list of geometrical methods with brief description may be found in the file ‘geomlib/item.h’.
If a virtual method is called with prefix geom_item_, the correct function address from VMT is
used. Redefined virtual methods have prefixes according to the class name, for example geom_
bezier_time_to_atime. When we know exactly the class at the time of execution, we can use
a little faster direct call to the method instead of geom_item_ interface.

5.6 Elementary curves

Class curve is an abstract class, that is basic class for the elementary curves. These curves are
the only ones, that can be inserted to compound paths. The base parametrization must belong
into the unit interval to allow merging into paths (see Section 5.7 [Compound paths], page 37).

5.6.1 Rational Bézier curves

This is the most universal curve in GEOMLIB and any other supported curve can be converted to
a finite sequence of rational Bézier curves. We have chosen rational Bézier curves to be the basic
curve, because they can exactly represent both conic sections and non-rational Bézier curves.
They are also an equivalent to NURBS (non-uniform rational Bézier splines) used in professional
CAD systems.

5.6.1.1 Definitions

General rational Bézier curve of degree n is represented by

P (t) =
∑n

i=0 wiB
n
i (t)Pi∑n

i=0 wiBn
i (t)

, t ∈ [0, 1],

where Bn
i are Bernstein basis polynomials, Pi are called control points and scalars wi are called

weights. This definition describes used TIME (see [TIME], page 26) parametrization of rational
Bézier curves.

(P0, w0)

(P3, w3)

(P2, w2)

(P1, w1)

Picture 2: Example of a cubic rational Bézier curve.

28 The VRR Programmer’s Manual

When all weights are the same, the equation can be rewritten to

P (t) =
n∑

i=0

Bn
i (t)Pi, t ∈ [0, 1],

which is called non-rational Bézier curve or simply Bézier curve. This is equivalent to
two-dimensional polynomial in Bernstein form (Section 5.2.2 [Polynomials in Bernstein form],
page 17) with limited interval of the t parameter.
Another definition: A two-dimensional rational Bézier curve (x, y) is the three-dimensional
non-rational Bézier curve (x, y, w) projected onto the plane w = 1 by the central projection
(division by w). This representation of projected three-dimensional space is called homogeneous
coordinates.
GEOMLIB supports only limited degree of rational Bézier curves: 1 ≤ n ≤ 3. It is enough to
describe only the most useful curves. All weighs must be positive and to reach a good stability
in numerical computations, weights should not have extremely small or large values.
Data structures describing general rational Bézier curve are:

/* two-dimensional point with weight */

struct geom_point_w {

real x, y; /* coordinates */

real w; /* a positive weight */

};

/* rational Bézier curve */

struct geom_bezier {

struct geom_curve curve; /* ancestor instance structure */

struct geom_point_w pt[4]; /* control points and weights */

struct geom_rectangle bbox; /* cached bounding box */

real alength; /* cached Euclidean arc length */

};

Degree of the curve and flags are stored in the reserved bytes of geom_o header to minimize
space requirement. Possible flags are:

GEOM_BEZIER_NONRATIONAL
All weights are one. Setting up this flag can drastically speed up curve computations.

GEOM_BEZIER_BBOX_VALID
Bounding box is cached.

GEOM_BEZIER_ALENGTH_VALID
Euclidean arc length is cached.

5.6.1.2 Properties of rational Bézier curves

• If all weights are the same, we get a non-rational Bézier curve.
• Entire curve is in the convex hull of its control points (convex hull property).
• The curve starts in its first control point and ends in last control point (endpoint interpo-

lation).
• The curve is tangent to the control polygon in the endpoints (tangency condition).
• Affine (even projective) invariance: transformed curve is equivalent to curve given by trans-

formed control points.
• The number of intersections of the curve with a line is not larger than the number of

intersection of the control polygon with the same line (variation diminishing property).

The geometrical meaning of some rational Bézier curves is:

Chapter 5: GEOMLIB 29

non-rational linear curve
Segment with linear parametrization.

rational linear curve
Segment with generally nonlinear parametrization

non-rational quadratic curve
Segment or section of parabola.

rational quadratic curve
Conic section (segment, circular arc, elliptic arc, section of parabola or section of
hyperbola).

non-rational cubic curve
rational curve curve

No simple meaning.

5.6.1.3 Recursive subdivision

To split non-rational Bézier curves at a given parameter t, we implemented the de Casteljau
algorithm. Output is the pair of non-rational Bézier curves, that correspond to subintervals [0, t]
and [t, 1] of the original curve. The TIME parametrizations of resulting curves are preserved and
only scaled from subintervals back to unit interval.

/* Splits rational Bézier curve at TIME parameter 0.5. */

int geom_bezier_split_middle(struct geom_bezier *bezier,

struct geom_bezier *left, struct geom_bezier *right);

/* Splits rational Bézier curve at a given TIME parameter. */

int geom_bezier_split_at(struct geom_bezier *bezier,

real time, struct geom_bezier *left, struct geom_bezier *right);

Let P0, . . . , Pn are the control points of non-rational Bézier curve
∑n

i=0 Bn
i (s)Pi. Then we define:

P 0
i = Pi,

P j
i = (1− t) · P j−1

i + t · P j−1
i+1 .

P
0

0
P

0

3

P
0

1

P
0

2

P
1

0

P
1

1

P
1

2

P
2

0

P
2

1

P
3

0

Picture 3: An application of the de Casteljau algorithm.

Resulting curve for parameter subinterval [0, t] has control points P i
0 and for [t, 1] control points

P n−i
i . Rational Bézier curves can be split in homogeneous coordinates by the same algorithm.

The described algorithm can be used multiple times to split the curve to a sequence of very
small curves. By reducing length of the subintervals, the resulting curve parts convert to short

30 The VRR Programmer’s Manual

segments with linear parametrizations. This property allows us to solve problems, that would
be very hard or impossible to solve directly. One of such problems is computation of Euclidean
arc length, which is impossible to solve exactly for rational Bézier curves in the algebraic way.
It is better to implement iterative splits by recursive subdivision in the half, than many splits
at smaller parameter values. Recursive subdivision of Bézier curves is known to be numerically
stable and we can locally control number of splits, according to the current part’s shape.
There are more interfaces to recursive subdivision in GEOMLIB. The following example describes
one of them:

struct geom_bezier bezier; /* rational Bézier curve to subdivide */

struct geom_bezier_subdivision sub; /* temporarily structure */

/* ... */

/* initialize the subdivision */

geom_bezier_subdivision_init(&sub, &bezier);

/* main subdivision cycle */

while (geom_bezier_subdivision_next(&sub)) {

/* if bezier curve sub.bezier is "small" enough... */

if (...) { /* subdivision condition */

/* ... then use it */

}

/* else split it recursively */

else

geom_bezier_subdivision_split(&sub);

}

/* clean up temporarily data */

geom_bezier_subdivision_destroy(&sub);

Information in the subdivision structure, that may be used in the condition is:
struct geom_bezier_subdivision {

struct geom_bezier *bezier; /* pointer to current subdivided part */

uns depth; /* recursion depth */

real left; /* left limit of current interval */

real right; /* right limit of current interval */

/* ... internal data entries */

};

More detailed description of subdivision interfaces can be found in the file ‘geomlib/bezier.h’.

5.6.1.4 Evaluation of points and derivation vectors

int geom_bezier_point_at_time(struct geom_bezier *bezier,

real time, struct geom_point *result);

The previous routine evaluates P (t) from rational Bézier curve definition. Implementation calls
de Casteljau algorithm to split the curve and returns common control point of split curves
(endpoint interpolation property of rational Bézier curves).

int geom_bezier_derivation_at_time(struct geom_bezier *bezier,

real time, struct geom_vector *result);

The previous function applies tangency condition of rational Bézier curves to evaluate requested
derivation vector. The curve is split at the parameter and derivation in endpoint of one part
scaled by its interval size is returned. Following equations are equivalent and the one with better
numerical stability (larger interval) is chosen:

dP (t) =
n · wR

1

(1− t) · wR
0

(P R
1 − P R

0),

dP (t) =
n · wL

n−1

t · wL
n

(P L
n − P L

n−1).

Chapter 5: GEOMLIB 31

5.6.1.5 Euclidean arc length

/* Computes Euclidean arc length of a given rational Bézier curve. */

real geom_bezier_alength(struct geom_bezier *bezier)

/* Conversions between TIME and ATIME parametrizations. */

real geom_bezier_time_to_atime(struct geom_bezier *bezier, real time);

int geom_bezier_times_to_atimes(struct geom_bezier *bezier,

uns count, real *times, real *atimes);

real geom_bezier_atime_to_time(struct geom_bezier *bezier, real atime);

int geom_bezier_atimes_to_times(struct geom_bezier *bezier,

uns count, real *atimes, real *times);

For rational Bézier curves, it is generally impossible to express Euclidean arc length and TIME–
ATIME ([ATIME], page 26) conversions by an expression. Even for elliptic arcs (a subset of
quadratic rational Bézier curves), there appear nontrivial elliptic integrals that are usually solved
by iterative methods. Non-rational Bézier curves cause problems from third degree.

To solve these problems, we apply recursive subdivision to approximate the curve by segments
and to compute arc length of the resulting polygon. All listed routines use the same approxi-
mation to almost straight parts with almost linear parametrizations, so mixed calls should have
good behaviour. If we need to convert several parameters at one time, it is much more effec-
tive to call only one routine with all the parameters (single subdivision). If the arc length is
computed it is stored in Bézier structure cache for later reuse.

More details about the implementation can be found in the file ‘geomlib/bezier_param.c’.

5.6.1.6 Points with a given tangent

This function finds the TIME parameters, where the first derivation is parallel to a given vector.
In situations with zero of infinite number of solutions, function returns no result.

int geom_bezier_direction_times(struct geom_bezier *bezier,

struct geom_vector *vector, uns flags, double *result);

Without loss of generality we can assume, that the direction vector is parallel to x axis. If it is
not, we apply a linear transformation to the vector and curve.

The curve is parallel to x axis only when the partial derivation in y is zero. For rational Bézier
curve we get

Y (t) =
∑n

i=0 wiB
n
i (t)Yi∑n

i=0 wiBn
i (t)

,

0 = dY (t) =
(
∑n

i=0 widBn
i (t)Yi) · (

∑n
i=0 wiB

n
i (t))− (

∑n
i=0 wiB

n
i (t)Yi) · (

∑n
i=0 widBn

i (t))
(
∑n

i=0 wiBn
i (t))2

,

0 =

(
n∑

i=0

widBn
i (t)Yi

)
·
(

n∑
i=0

wiB
n
i (t)

)
−
(

n∑
i=0

wiB
n
i (t)Yi

)
·
(

n∑
i=0

widBn
i (t)

)

and for non-rational curves

Y (t) =
n∑

i=0

Bn
i (t)Yi,

0 = dY (t) =
n∑

i=0

dBn
i (t)Yi.

All we need is derivation, multiplication and subtraction of Bernstein polynomials and a
general root solver. These routines are defined in ‘geomlib/bernstein.h’. Some special
cases are computed directly to increase the performance. Functions are implemented in
‘geomlib/bezderiv.c’.

32 The VRR Programmer’s Manual

5.6.1.7 Bounding box

The problem is similar to finding a bounding box of these points:
• Endpoints of the curve.
• Points, where the derivation vector is parallel to x axis.
• Points, where the derivation vector is parallel to y axis.

int geom_bezier_bbox(struct geom_bezier *bezier,

struct geom_rectangle *result);

The previous function calls geom_bezier_direction_times twice to retrieve the interior points
and returns their common bounding box with the first and last control point. In some singular
cases, the algorithm can fail to find the correct bounding box.

5.6.1.8 Curve points in a given distance to a point

This function finds all TIME parameters, where the curve is at a given distance to a given point.
int geom_bezier_distance_times(struct geom_bezier *bezier,

struct geom_point *point, real distance, struct garr *result);

Without loss of generality, we can assume that the point is located in the origin. Otherwise, we
can translate the curve. Let the desired distance is D. For rational Bézier curve we get

D =

√(∑n
i=0 wiBn

i (t)Xi∑n
i=0 wiBn

i (t)

)2

+
(∑n

i=0 wiBn
i (t)Yi∑n

i=0 wiBn
i (t)

)2

,

D2 =
(∑n

i=0 wiB
n
i (t)Xi∑n

i=0 wiBn
i (t)

)2

+
(∑n

i=0 wiB
n
i (t)Yi∑n

i=0 wiBn
i (t)

)2

,

0 = −D2 ·
(

n∑
i=0

wiB
n
i (t)

)2

+

(
n∑

i=0

wiB
n
i (t)Xi

)2

+

(
n∑

i=0

wiB
n
i (t)Yi

)2

.

To solve roots of this polynomial, we can use routines from ‘geomlib/bernstein.h’. See
‘geomlib/beznear.c’ for implementation details.

5.6.1.9 Curve point nearest to a given point

int geom_bezier_nearest_to_point(struct geom_bezier *bezier,

struct geom_point *point, uns flags, struct geom_nearest *result);

Without loss of generality, we can assume, that the point is located in the origin. Otherwise,
we can translate the curve. Problem is similar to finding the nearest points of these:
• Endpoints of the curve.
• Points, where the derivation vector and vector leading to the origin are perpendicular.

S

N1

N5

N2 N4 = P (t)

P ′(t)

N3

Picture 4: Candidates for the nearest point.

Chapter 5: GEOMLIB 33

The second set of points can be described by

0 =X(t) · dY (t) + Y (t) · dX(t),

0 =
(∑

wiB
n
i (t)Xi∑

wiBn
i (t)

)
· (
∑

widBn
i (t)Yi) · (

∑
wiB

n
i (t))− (

∑
wiB

n
i (t)Yi) · (

∑
widBn

i (t))
(
∑

wiBn
i (t))2

+(∑
wiB

n
i (t)Yi∑

wiBn
i (t)

)
· (
∑

widBn
i (t)Xi) · (

∑
wiB

n
i (t))− (

∑
wiB

n
i (t)Xi) · (

∑
widBn

i (t))
(
∑

wiBn
i (t))2

,

0 =
(∑

wiB
n
i (t)Xi

)
·
[(∑

widBn
i (t)Yi

)
·
(∑

wiB
n
i (t)

)
−
(∑

wiB
n
i (t)Yi

)
·
(∑

widBn
i (t)

)]
+(∑

wiB
n
i (t)Yi

)
·
[(∑

widBn
i (t)Xi

)
·
(∑

wiB
n
i (t)

)
−
(∑

wiB
n
i (t)Xi

)
·
(∑

widBn
i (t)

)]
,

0 =
(∑

wiB
n
i (t)Xi

)
·
(∑

widBn
i (t)Yi

)
·
(∑

wiB
n
i (t)

)
+(∑

wiB
n
i (t)Yi

)
·
(∑

widBn
i (t)Xi

)
·
(∑

wiB
n
i (t)

)
+

− 2 ·
(∑

wiB
n
i (t)Xi

)
·
(∑

wiB
n
i (t)Yi

)
·
(∑

widBn
i (t)

)
.

All sums are from zero to n. The resulting polynomial is of degree eight for rational cubic curves,
but most cases are much easier. Main parts of the implementation can be found in the internal
function geom_bezier_center_extreme_times in ‘geomlib/beznear.c’. The algorithm can
miss the correct nearest point in some singular cases.

5.6.1.10 Intersections

int geom_beziers_intersections(struct geom_bezier *bezier1,

struct geom_bezier *bezier2,

uns flags, struct garr *result);

Computing all intersections of two rational Bézier curves is one of the most difficult tasks in
GEOMLIB and it could be improved in many ways in the future. Usually, the problem is solved
by recursive subdivision, polynomial solver or algorithms dealing with eigenvalues. Because
there is a general polynomial solver implemented in the project, we have chosen the polynomial
way.

Implemented algorithm is inspired by the article D. Machota, J. Demmel: Algorithms for In-
tersecting Parametric and Algebraic Curves I: Simple Intersection. In this text the problem
of computing intersections of rational curves (in parametric or implicit form) is reduced to
eigenvalue problem, but some ideas can be easily adapted for the usage of the polynomial solver.

Let P (t) be the first input curve and Q(s) the second one. The main idea is to convert Q(s) to
implicit form F (x, y) = 0, substitute first curve P (s) to obtain an univariate polynomial and call
polynomial solver to get the intersection parameters on the first curve. Finally, if it is necessary,
points and parameters on the second curve are evaluated.

Detailed description of rational Bézier curve implicitization can be found in the cited article.
The algorithm results in symbolic matrix (each entry is a linear combination of 1, x and y),
whose determinant is the curve in implicit form F (x, y) = 0.

Before the implicitization is performed, the algorithm tries to reduce curve degree while pre-
serving curve shape to avoid zero determinant of implicit matrix. Such curve is for example
non-rational quadratic Bézier curve with the middle control point in the center of the others.

The rest of algorithm is simple, provided we have implemented polynomial solver, curve
points evaluation and algorithm for finding nearest points. Details can be found in
‘geomlib/bezinter.c’. In some special cases, the algorithm fails to find the intersections.

34 The VRR Programmer’s Manual

5.6.1.11 Degree elevation

int geom_bezier_elevate(struct geom_bezier *bezier,

uns target_degree, struct geom_bezier *result);

Degree elevation of a rational Bézier curve means to increase the number of control points while
preserving curve shape and parametrization. This can be done exactly in the algebraic way.
Used formulas and implementation details can be found in ‘geomlib/bezier.c’.

The previous function is extensively used while exporting images to PS, PDF and SVG (see
Chapter 11 [Export], page 100) to convert lower degree curves to cubic Bézier curves.

5.6.2 Segments

Segments in GEOMLIB are stored in the following structure:
struct geom_segment {

struct geom_curve curve; /* ancestor instance structure */

struct geom_point a, b; /* endpoints */

};

The TIME parametrization is given by formula:

P (t) = (1− t) ·A + t ·B.

The implementation of segments is very simple and intuitive. Some virtual methods are not
redefined for segments, so Bézier expansion to non-rational linear curve is necessary. Details can
be found in the files ‘geomlib/segment.h’ and ‘geomlib/segment.c’.

5.6.3 Elliptic arcs

5.6.3.1 Definitions

Implicit form of an ellipse with center in the origin and axis parallel to plane axis is

x2

a2
+

y2

b2
= 1,

where a and b are lengths of the ellipse semi-axis.

Set of all general ellipses is a subset of all planar conics

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

Planar conics include circles, ellipses, parabolas, hyperbolas and some degenerate cases (lines
and points). Any of their finite sections can be replaced with a finite set of quadratic rational
Bézier curves. GEOMLIB implements structures and direct manipulation with ellipses, circles
and their sections. Other conic types are not supported fully.

The parametric form of general ellipse is

x = a · cos t,

y = b · sin t,

rotated around the origin and moved to the ellipse center point.

Chapter 5: GEOMLIB 35

S

a

b

P (0) = P (2π)
P (0.5 · π)

P (π) P (1.5 · π)

α

Picture 5: Ellipse in parametric form P(t).

To store a section of ellipse (elliptic arc) we use this structure:
struct geom_elliptic_arc {

struct geom_curve curve; /* ancestor instance structure */

struct geom_point center; /* center point */

real rotation; /* rotation around the center point (CCW in radians) */

real a_radius; /* X-axis radius (a_radius >= 0) */

real b_radius; /* Y-axis radius (b_radius >= 0) */

real start; /* angle of arc starting point */

real dif; /* angle between endpoints */

};

The TIME parametrization with parameter s of the arc has the previously described parametric
form, where

S = center,

α = rotation,

a = a radius,

b = b radius,

t = start + dif · s.

5.6.3.2 Normalized form

We say that elliptic arc in parametric form is normalized if:
• a radius ≥ b radius

• rotation ∈ [0, R PI] ' [0, π]
• start ∈ [0, R 2PI] ' [0, 2π]
• dif ∈ [−R 2PI, R 2PI] ' [−2π, 2π]

Every elliptic arc can be converted to this form. Almost every geometric routine assumes a
normalized elliptic arc as input and returns normalized arcs as its output. Assertions of this
required condition contain exact real constants for interval limits and no rounding errors are
allowed. The following function can be used to normalize a given elliptic arc:

int geom_elliptic_arc_normalize(struct geom_elliptic_arc *arc);

5.6.3.3 Initialization

There are many routines that can be used to initialize entire ellipses in normalized form. These
are: the geom_elliptic_arc_set and all functions starting with geom_elliptic_arc_from_.
Full list with brief description can be found in ‘geomlib/ellipse.h’.
An elliptic arc can be created by one of these methods followed by a call to this function:

int geom_elliptic_arc_set_endpoints(

struct geom_elliptic_arc *arc, struct geom_point *start_point,

struct geom_point *end_point, struct geom_point *mid_point,

real start_angle, real dif_angle, uns flags);

36 The VRR Programmer’s Manual

The previous function computes start and dif entries in geom_elliptic_arc structure by
selected algorithm in the flags parameter. Meaning of remaining parameters depends on this
value. Input points should be near the ellipse. Resulting elliptic arc is always normalized.
The following example shows how to create an elliptic arc with given endpoints, rotation and
eccentricity that pass through a given midpoint:

struct geom_elliptic_arc arc;

struct geom_point *start, *end, *mid;

real rotation, eccentricity;

/* ... compute input parameters */

/* instance creation */

geom_instance_init(&arc, GEOM_CLASS(elliptic_arc));

geom_elliptic_arc_create(&arc);

/* arc initialization */

if (GEOM_ETEST(geom_elliptic_arc_from_3_points_rotation_eccentricity(

&arc, start, end, mid, rotation, eccentricity)) &&

GEOM_ETEST(geom_elliptic_arc_set_endpoints(

&arc, start, end, mid, 0, 0, GEOM_CONIC_ARC_MIDDLE)) {

/* elliptic arc has been correctly initialized */

}

else {

/* floating point error */

}

/* instance destruction */

geom_elliptic_arc_destroy(&arc);

5.6.3.4 Bézier expansion

Expansion of elliptic arc to a set of quadratic rational Bézier curves is relatively simple. We
will describe a formula how to a convert circular arc of angle less than π. General elliptic arc
then can be expressed by at most three Bézier curves by applying an affine transformation to
converted circular arcs.
Let a circular arc has angle length α < π. The following Bézier curve is exactly the same curve:
• First and third control points are equal to the arcs endpoints.
• Middle control point is the intersection of tangents in the arcs endpoints.
• Weights of resulting Bézier curve are

w0 = 1,

w1 = cos
α

2
,

w2 = 1.

int geom_elliptic_arc_to_bezier(

struct geom_elliptic_arc *arc, struct geom_bezier *bezier);

int geom_elliptic_arc_expansion_append

(struct geom_elliptic_arc *arc, struct geom_fpath *expansion);

By the definition of implemented elliptic arcs, we only need to compute expansions of unit
circular arcs centered to the origin (at most 3 arcs) and then apply a scale (a_radius, b_
radius), rotation and translation (by center) to the result. There are some optimizations in
the implementation, that can be found in source code.

real geom_elliptic_arc_time_to_btime(struct geom_elliptic_arc *arc,

struct geom_expansion *expansion, real time);

To describe conversion from elliptic arc parametrization (t) to Bézier expansion parametriza-
tion (s), we assume, that t ≤ 1

2
and that there is only one Bézier curve in the expansion.

Chapter 5: GEOMLIB 37

Generalization to all possible cases would be simple. The formula used for the computation is
following:

d = 0.5 · dif,

s =
sin(d · t)

sin(d · t) + sin(d · (1− t))
.

real geom_elliptic_arc_btime_to_time(struct geom_elliptic_arc *arc,

struct geom_expansion *expansion, real btime);

The reversed conversion for s ≤ 1
2

is

t = 0.5−
arctan sin(d·(0.5−s))

s−s2+cos(d·(0.5−s+s2))

2d
.

5.6.3.5 Affine transformation
int geom_elliptic_arc_transform(struct geom_elliptic_arc *arc,

struct geom_transform *transform, struct geom_elliptic_arc *result);

Affine transformation of elliptic arc in previously defined parametric form is not an easy task.
We have not discovered any direct formula for general transformation, so the computation is a
little tricky. The curve is first converted to its implicit form where affine transformation can be
applied. Finally, it is converted back to the resulting parametric form. These conversions can
lead to numerical problems, especially for extremely thin and long ellipses or for almost singular
transformations.
The long implementation of this algorithm, dealing with most of singularities, can be found in
source ‘geomlib/ellipse.c’.

5.7 Compound paths

Compound path is a connected sequence of elementary curves (rational Bézier curves, segments
and elliptic arcs – see Section 5.6 [Elementary curves], page 27). GEOMLIB contains two classes
that can hold compound paths of arbitrary length, path and fpath. The first one only extends
the group class by geometrical routines. The second path type can be used only in some
specific situations and implements extra internal allocator to increase performance of curves
inserting. All methods common to elementary curves should also work for compound paths
(with differences in parametrization).

5.7.1 Class path
struct geom_path {

struct geom_group group; /* ancestor instance structure */

real alength; /* cached Euclidean arc length */

};

The previous structure is derived from the group class, which implements manipulation with
ordered sets of items. Compound paths use inherited functions to store the list of connected
elementary curves and cannot contain other item descendants. Exact continuity of neighbor
curves is not checked, but it is assumed, that there are only inconsiderable errors. In the other
case, behaviour of some algorithms is undefined.
The TIME parametrization of compound path is defined as a composition of all TIME parametriza-
tion intervals incident to contained elementary curves. Parameter t in the i-th curve (started
from zero) corresponds to i + t parameter in the compound path.
The major part of implementation is redefinition of abstract geometrical routines derived from
the group class. Most of them are very intuitive and do not need detailed description. Usually,
a specialized method is called for each elementary curve and results are merged to agree with

38 The VRR Programmer’s Manual

entire path. If it is necessary, TIME parameters are converted between the path and elemen-
tary curves. Full implementation with brief comments can be found in ‘geomlib/path.h’ and
‘geomlib/path.c’.
Paths remember their Bézier expansions when they are generated. There is no automated
mechanism how to propagate changes to the path from elementary curves or inherited group
methods. After any change in the path (insertion, deletion or a curve modification), user should
manually call geom_path_after_change to invalidate cached values.
Left curves in common paths are automatically freed in the path destructor. All inserted curves,
that were not allocated using xmalloc must be removed manually before calling the destructor.
Here follows a simple example of path structure usage:

struct geom_path path;

struct geom_segment *segment1, *segment2;

struct geom_elliptic_arc *arc;

void *curve;

/* ... curves allocation */

/* path instance creation */

geom_instance_init(&path, GEOM_CLASS(path));

geom_path_create(&path);

/* insertion of some preallocated elementary curves */

geom_group_add_tail(&path, segment1);

geom_group_add_tail(&path, arc);

geom_group_add_tail(&path, segment2);

geom_path_after_change(&path);

/* loop over inserted curves */

GEOM_GROUP_WALK(&path, curve) {

/*... */

}

/* path instance destruction,

curves are freed automatically */

geom_path_destroy(&path);

5.7.2 Class fpath
struct geom_fpath {

struct geom_path path; /* ancestor instance structure */

struct geom_fpath_block *block_last; /* set of allocated memory blocks */

byte *block_ptr; /* start of unused part of last block */

uns block_free; /* size of last block unused part in bytes */

uns total_size; /* size of last block in bytes */

};

/* memory block of fpath allocator */

struct geom_fpath_block {

struct geom_fpath_block *prev; /* linked list pointer */

byte start; /* start of data buffer */

};

The class fpath is derived from path. The added feature is a simple greedy internal allocator for
elementary curves, that is optimized for fast memory allocation. Releasing of allocated memory
is impossible until the path is cleared or destroyed.
The life cycle of a fpath instance has two phases. In the first phase, only allocations and
insertions are allowed. To get to the second phase, geom_fpath_finish must be called. After
that, the path is fixed and no changes may not be made. Geometric routines can be called in
the second phase only. This interface is more strict than it would be necessary for implemented
allocator, but it allows some planned future optimizations. A typical situation where fpath
outperforms path in combination with global allocator is computing of Bézier expansions.

Chapter 5: GEOMLIB 39

The allocator contains a link list of memory blocks reserved by xmalloc. New curves are always
placed at the first unused byte of the last block. If there is not enough space, a new block is
allocated and added to end of the list. Sizes of new blocks increase exponentially.

The function headers and source code can be found in ‘geomlib/fpath.h’ and
‘geomlib/fpath.c’.

The following example shows a typical fpath usage:
struct geom_fpath path;

struct geom_segment *segment1, *segment2;

struct geom_elliptic_arc *arc;

void *curve;

/* fpath instance creation */

geom_instance_init(&path, GEOM_CLASS(fpath));

geom_fpath_create(&path);

/* FIRST PHASE */

/* insertion of some preallocated elementary curves */

segment1 = GEOM_FPATH_APPEND_NEW(&path, segment);

/* ... segment1 initialization */

arc = GEOM_FPATH_APPEND_NEW(&path, elliptic_arc);

/* ... arc initialization */

segment2 = GEOM_FPATH_APPEND_NEW(&path, segment);

/* ... segment2 initialization */

geom_fpath_finish(&path);

/* SECOND PHASE */

/* ... from now, geometric routines are allowed */

/* fpath instance destruction */

geom_fpath_destroy(&path);

5.8 Special curve types

The following classes are used in Kernel to allow a similar access to special graphical objects
like points and decorators as well as to other curves. These types redefine necessary virtual
functions of item class to support their Bézier expansion. Because of the specific GEOMLIB
structure, all geometrical functions such as bounding boxes computing or arc lengths are auto-
matically supported. A short implementation can can be found in ‘geomlib/special.h’ and
‘geomlib/special.c’.

5.8.1 Point item
struct geom_point_item {

struct geom_item item; /* ancestor instance structure */

struct geom_point point; /* a point in plane */

};

The previous simple type offers the interface to single points in plane. Most of geometrical
functions could be improved by a specialized implementation working without Bézier expansion.

5.8.2 Callback-expansion item
struct geom_callback_item {

struct geom_item item; /* ancestor instance structure */

int (*func)(struct geom_callback_item *, struct geom_fpath *);

/* expansion callback */

};

An instance of the callback_item class can express any continuous curve, that can be expanded
to a sequence of rational Bézier curves. When Bézier expansion is required, callback given by

40 The VRR Programmer’s Manual

func pointer is executed. This routine should append the sequence of rational Bézier curves to
the end of fpath (the path is in the first phase as described in [Class fpath], page 38). If the
computation raises an error, callback may return a negative error code which is propagated to
all geometrical functions results. After a change to the curve is applied, user should invalidate
possibly stored expansion by geom_item_after_change. The TIME parametrization of callback-
expansion items equals BTIME (parametrization of the expansion).

Chapter 6: Kernel 41

6 Kernel

6.1 Kernel overview

The purpose of VRR’s kernel is to store the main data structures containing geometric objects. It
performs no geometric computations directly – that is done by the GEOMLIB routines. Is uses
the GEOMLIB heavily. The other modules, on which kernel does not depend, can be informed
about data structure changes via the hook mechanism.

It also provides an interface for exception handling: transactions. The VRR source code contains
many error checks, especially in the GEOMLIB and the kernel. To minimize the number of
return value checks, we have implemented an exception handling mechanism which takes care
of memory deallocation and undoing of data structure changes using the transaction logs.

The kernel consists of the following parts, described in the further sections:

• Implementation of an object hierarchy of graphic and non-graphic objects

• Transactions and undo history

• Topological sorting algorithm

• Storing of strings

6.2 Objects

6.2.1 The object hierarchy

Like the rest of VRR source code, the kernel is written in pure C according to the C99 standard.
Nevertheless, the kernel emulates an object hierarchy for basic kernel objects. The hierarchy
looks as follows:

• struct o – the root of the hierarchy

• struct obj – a non-graphic object

• struct obj_doc – a document

• struct obj_tlo – a page

• struct go – a graphic object

• struct go_point – a point

• struct go_segment – a segment

• ... and other graphic objects

To enable typecasts, the derived object structure always begins with the contents of the ancestor
structure. These are the contents of the root object type whose meaning is then described in
more detail:

struct o

{

u8 kind;

u8 type;

u8 subtype;

u8 _dummy;

uns ref_count;

struct slist prop;

uns flags;

};

In the following image, you can see an example of the hierarchy of user objects hierarchy. The
root of the user object hierarchy is a special object obj_universe.

42 The VRR Programmer’s Manual

struct obj * obj universum

struct obj doc * doc1 struct obj doc * doc2

struct obj tlo * tlo1 struct obj tlo * tlo2

struct go * go1 struct go * go2

struct go * go3 struct go * go4

struct go * go5struct go group * grp

Picture 6: An example of the universe structure.

Object kind

The object kind specifies if the object is a non-graphic object (T_OBJ) or a graphic one (T_GO).
The graphic and non-graphic objects have very little in common. Non-graphic objects do not
have any graphic nor geometric meaning, their purpose is to represent documents and pages in
the object structure, and some internal special entities, too.

Object type

For graphic objects, the type specifies the basic object type, like point, segment, intersection,
etc. Different object types have different data structures and a completely different geometric
behaviour. Objects with the same type have the same hangers.
Non-graphic objects have no subtypes and are distinguished by their type only. The possible
values are:
• OT_UNIVERSE – a special type used only for the root object of the whole user object hierarchy
• OT_DOCUMENT for documents
• OT_TLO for pages
• OT_TEMP for a special internal object used for storing objects temporarily during a transac-

tion
• OT_ZOMBIE for a special internal object used for storing objects which no longer exist (were

deleted from the universe) but cannot be deleted yet

Graphic object subtype

The graphic object subtype determines the geometric behaviour of an object more precisely.
Objects with the same type have the same set of hangers (the “geometric output”), but they
differ in anchors (the “geometric input”). For example, an elliptic arc can be determined by
two foci and a point, or by three points on its perimeter plus rotation and eccentricity; that is
specified by the subtype.

Reference count

To minimize the efforts needed for correct data deallocation, we have implemented reference
counting of objects. If any data structure needs to store a pointer to an object, it should
increment its reference count and decrement again to release the pointer. When the reference
count of an object becomes zero, the object is destroyed.

Chapter 6: Kernel 43

Objects with non-zero reference count which are not linked in the universe are stored in the
zombie and can be resurrected again (for example, by linking them via undo).

Property list

The objects store various data of various types and various meaning:

• geometric properties, like eccentricity of an ellipse, control point weights of a Bézier curve

• graphic properties, like stroke color, fill color, line width, invisibility

• text or TEX text source code

• any additional user-defined data

All these data can be accessed using an uniform kernel interface. Some of the properties are
just regular data structure members, while the others are virtual with read and write callbacks
which can cause complex recomputations.

6.2.2 Graphic objects

Graphic objects are the main VRR kernel objects. Each one (except for groups) represents a
graphic element in the image. The geometric dependency structure is stored in the objects using
anchors and hangers. Anchors provide “geometric input” for the objects, whereas hangers are
“geometric output” devices. The set of hangers is the same for all graphic objects of the same
type; the anchor set can differ for subtypes.

A hanger has a list of hangers which hang on it; an anchor contains a pointer to the one hanger
it hangs on. There are several types of hangers:

• position hangers – hangers associated with a point position. These are the most frequent
hangers. Some special hangers are called mouse-clicks; they do not belong to any graphic
object, they belong to a page and are destroyed automatically. Mouse-clicks are used for
hanging “independent” anchors which do not hang on any object’s hanger and their point
position can be changed arbitrarily.

• curve hangers – hangers associated with the object’s curve, but no specific point position
on it. These are used by parametric points and intersections.

A list of all the supported graphic objects follows.

6.2.2.1 Point

A point is stored in the go_point structure. It has one anchor and one hanger, both for the
point’s position. It has the GOT_POINT type and one subtype only – GOST_POINT.

6.2.2.2 Segment

A segment is stored in the go_segment structure. It has two anchors: the start point and the
endpoint, and the corresponding hangers. Additionally, it has a curve hanger for the whole
segment. It has the GOT_SEGMENT type and GOST_SEGMENT subtype.

6.2.2.3 Bézier curve

A Bézier curve has the GOT_BEZIER type and can be either GOST_BEZIER_QUADRATIC or GOST_
BEZIER_CUBIC. Both of them have an anchor for the start point, one for the end point. The
quadratic Bézier curve has another anchor for the control point, the cubic Bézier curve has two
control points. For each point there is a weight property defining the rational weight of the
point.

Both the quadratic and cubic Bézier curves have a curve hanger, a start point hanger and an
end point hanger.

44 The VRR Programmer’s Manual

6.2.2.4 Elliptic arc

An elliptic arc is stored in the go_elarc structure. It has the GOT_ELARC type and one of the
following subtypes:

• GOST_ELARC_XYR for arcs defined by the center point and radii

• GOST_ELARC_FOCI for arcs defined by the two foci and a point

• GOST_ELARC_3SMALL for the smallest elliptic arcs (in area) which contain the three given
points

• GOST_ELARC_3ECC for arcs defined by three points on the perimeter, rotation and eccentricity

• GOST_ELARC_XY1ECC for arcs defined by the center point, a point on the perimeter, rotation
and eccentricity

The anchor set differs according to the subtype. Every elliptic arc has a curve hanger, and
hangers for start point, end point, and center point. In addition to the subtype, the arc has an
important property called “conic”. The available values of the property depend on the subtype.
The values for all subtypes are:

• start-entire – a closed arc

• start-dif – an arc defined by the “start” parameter with “dif” defining the arc length

The available values for arcs with at least one point on the perimeter:

• point-entire – a closed arc

• point-dif – an arc starting from the start point with “dif” defining the arc length

The available values for arcs with three points on the perimeter:

• ccw – an arc connecting the three given points counterclockwise

• cw – an arc connecting the three given points clockwise

• smaller – the smaller one of the two arcs connecting the start point and the end point and
having the third point on the perimeter of the whole circle/ellipse

• bigger – the larger one (dtto)

• middle – the arc connecting the start point and the end point via the center point

• opposite – the opposite to “middle”

6.2.2.5 Parametric point

A parametric point is stored in the go_parametric_point structure. It has a curve anchor and
a “parameter” property which expresses the parameter of the point position on the curve. It
has one hanger for the point position. The type is GOT_PARAMETRIC_POINT and the subtype is
GOST_PARAMETRIC_POINT.

The parametrization is linear; the parameter value grows linearly along the curve.

6.2.2.6 Intersection point

An intersection point is stored in the go_intersection_point structure. It has two curve
hangers and a “parameter” property which expresses the parameter of the point position on
the first curve. If the geometry of the curves changes, the intersection is positioned to the
intersection closest to the parameter position.

It has one hanger for the point position. The type is GOT_INTERSECTION_POINT and the subtype
is GOST_INTERSECTION_POINT.

Chapter 6: Kernel 45

6.2.2.7 Text and TEX text

A text or TEX-text object is stored in the go_text or go_tex_text structure, respectively.
Both have a position anchor for the text reference point and no hangers. They have also a
transformation matrix which defined the text’s transformation up to absolute movement.
The position of the text objects is defined by a reference point (hanger) and several properties.
The “align” property determines the reference point position with regard to the text bounding
box. The “relative-shift” and “absolute-shift” properties determine additional adjustments of
the position.
Each text label has several special points useful for aligning. The left reference point is usually a
point on text’s baseline near the left edge of the leftmost letter and is taken from the used font.
We also define the right reference point which is exactly on the right edge of text’s bounding
box in the current VRR’s version.
First, the label is aligned according to values of “align” and “relative-shift” properties. The
result is then translated by “absolute-shift” and transformed with a stored linear transformation
(rotation, scale or skew) around the hanger point.
The possible values of “align-x” (the horizontal align) are:
• refpoints-relative – The hanger is placed horizontally between the two reference points with

the x coordinate of “relative-shift” as the parameter.
• refpoints-left – The parameter is replaced with 0.
• refpoints-center – The parameter is replaced with 0.5.
• refpoints-right – The parameter is replaced with 1.
• bbox-relative – The hanger is placed horizontally between the edges of the text’s bounding

box.
• bbox-left – The parameter is replaced with 0.
• bbox-center – The parameter is replaced with 0.5.
• bbox-right – The parameter is replaced with 1.

The possible values of “align-y” (the vertical align) are:
• baseline – The hanger is placed vertically on the text’s baseline.
• bbox-relative – The hanger is placed vertically between edges of the text’s bounding box.
• bbox-bottom – The parameter is replaced with 0.
• bbox-center – The parameter is replaced with 0.5.
• bbox-top – The parameter is replaced with 1.

The ordinary text contains also the font ID and font size. The TEX text contains an array of
TEX glyphs obtained from the FONTLIB.
They have the GOT_TEXT, GOT_TEX_TEXT types, and GOST_TEXT and GOST_TEX_TEXT subtypes,
respectively.

6.2.2.8 Decoration point

A decoration point is stored in the go_decorator_point structure. It has the GOT_DECORATION_
POINT type and GOST_DECORATOR_POINT subtype. It is a point with style properties including
the rotation, radius and the number of vertices. The number of vertices can be:
• zero for a circular shape
• one for no shape
• two for a segment
• three up to one hundred for a polygon with the given number of vertices

46 The VRR Programmer’s Manual

• more for a circular shape again.

The decoration point is resistant to transformations – it always keeps the same radius and
rotation.

6.2.2.9 Arrow

An arrow is stored in the go_arrow structure. It has the GOT_ARROW type and GOST_ARROW
subtype. It is a transformation-resistant decoration, too. It should be positioned on a curve
(it has a curve hanger and a parameter property) and it adjusts its direction according to the
curve’s tangent in the snap position. Its appearance can be adjusted by changing the properties.
Each arrow has four important points - the front point (where the hanger is located), two side
points and the back point. By setting up the “arrow-alignment” property, you can specify how
the arrow’s rotation should be computed. We can align the arrow to the derivation in the front
point or force the back point to be in the intersection of the curve and the side points’ center
line. The second possiblity is useful especially for a very rounded curve. The final rotation can
be adjusted with “rotation”.
The front shape of the arrow is controlled by the “arrow-angle” property (half of the angle
between the front point and side points), “arrow-length” (distance between that points),“arrow-
front” (shape type) and “front-curvature”. The property “back-distance” determines the angle
between the back point and side points and the “arrow-back” property determines the back
shape of the arrow.

6.2.3 Groups

A group is a special case of a GO containing a list of GOs and a list of selected GOs – the
selection of GOs is local in groups.
Every graphic object is always linked inside a group, if not in the universe then in a special
group somewhere else. A group is a graphic object, too; but there are also some special groups
called top-level groups which are not linked in any group. They are contained in pages instead.
These groups also store the list of a page’s mouse-clicks (see [Mouse clicks], page 43).

6.2.4 Paths

Paths are special cases of groups, too. In addition to groups, a path contains graphic style
properties (stroke color, fill color, etc.) that override the style properties of all objects contained.
The objects linked in a path must satisfy strict dependency requirements: each object’s first
anchor must hang on the previous object’s last hanger. Moreover, only these objects can be
linked into a path: a segment, Bézier curves, and elliptic arcs.

6.2.5 Pages

Every page stores a tree-like hierarchy of groups. It consists of:
• undo history – the list of undo history items with a pointer to the current one.
• hook list – hooks which were registered for the contents of this page.
• top-level group

• temp – another top-level group for objects which have been temporarily unlinked from the
page (inside on a transaction).

• tsort list – a data structure for storing the topologically sorted contents of the page.
• R-tree – the GEOMLIB R-tree data structure for the page’s contents. These data are freed

when not needed.

Thus, every page has its independent undo history. The undo history items for undo actions
preformed of non-graphic objects (which are not inside any page) are stored in a special page
tlo_universe.

Chapter 6: Kernel 47

6.2.6 Linking and unlinking

Universe

Temp

Zombie

the object

is created

the object

is destroyed

Picture 7: The life cycle of an object.

An object can “live” in the following three locations:
• The universe – the root of the whole object hierarchy created by the user. (Which itself is

invisible for the user.)
• The temp – an object which stores objects which were temporarily unlinked during a trans-

action.
• The zombie – a non-graphic object which stores all objects unlinked from the universe with

non-zero reference counts.

When an object is created, a transaction (see Section 6.3 [Transactions and topological sorting],
page 48) is active. Every transaction uses a temp. Transactions working with graphic objects
use the temp of the current transaction page, transactions working with non-graphic objects use
the obj_temp object.
The newly created object is initialized to have the temp as its parent (we say that the object
is linked in the temp). Then, inside the transaction, it can be relinked into an object in the
universe. If not, it is relinked into the zombie after the end of the transaction. From there, it
can be then relinked via the temp into an object in the universe.
The objects in the zombie are deleted automatically when their reference count becomes zero.
If an object is relinked, its children are not – their parent pointers remain unchanged. For
example, if you unlink a page, it goes to the obj-zombie, but the page’s contents stay linked in
the page. When you undo the last action, the page is resurrected with its contents as well.

Zombie for objs Universum Zombie for gos

Picture 8: An example of the zombie structure.

48 The VRR Programmer’s Manual

In the picture, you can see an example of object structure of zombie. There are two zombie
objects: one for graphic objects (gos) and one for the non-graphic ones (obj). Every object
linked in the zombie points to its previous parent from where it was unlinked; as observed in
the picture, the previous parent might be in the zombie as well. All the pointing objects from
zombie keep a reference of the parent so that the pointer does not get invalid.
The zombie and temp objects cannot be accessed directly; instead, there are these functions
that do the linking:

obj_link(struct obj* obj, struct obj* father);

obj_unlink(struct obj* obj);

obj_relink(struct obj *obj, struct obj *father, struct obj *old_father);

go_link_after(struct go *go, struct go_group *group, struct go *after);

go_unlink(struct go *go);

go_relink(struct go *go, struct go_group *group, struct go *after);

and their various special cases for convenience. They use the temp internally.

6.3 Transactions and topological sorting

The VRR kernel provides an interface for exception handling: transactions. To minimize the
number of return value checks, we have implemented an exception handling mechanism which
takes care of memory deallocation and undoing of data structure changes using the transaction
logs.
All changes to kernel data structures must be done via transactions. The transaction logs are
called undo histories. In every page, there is one undo history for transactions manipulating the
contents of the page. Additionally, for transactions manipulating the non-graphic objects, there
is one undo history stored in the page tlo_universe.
The transactions can be nested arbitrarily. If the current transaction fails, all the necessary
kernel recoveries are performed automatically using the transaction log. Some other actions can
be done in the exception handler code of the transaction. The exception handler may cause
another transaction fail and thus cause the exception to be propagated up in the transaction
stack.

6.3.1 How to use transactions

The transaction interface is similar to those of some other programming languages:
TRANS_BEGIN_MAIN(transaction_tlo, undo_item_description, error_buffer)

{

// do something

if (something_nasty)

trans_fail("Something nasty ocurred.");

// ...

}

TRANS_FAILED

{

// Error handler.

if (too_nasty)

trans_fail("Something too nasty occured.");

else

msg("This happened: %s", error_buffer);

}

TRANS_END

The transactions are implemented using the goto, return and longjmp commands. Jumping
into and out of the transaction block is forbidden. Inside of a transaction, any other functions
can be called without restrictions. The only method to break the current transaction is to call

Chapter 6: Kernel 49

the trans_fail function. When this function is called, the current transaction is broken and
the error handler is executed.

void trans_fail(const char* format, ...)

The trans_fail function leaves all nested functions and does a long jump to the beginning
of the error handler. It accepts the same arguments as printf and the resulting message is
stored in the error_buffer which is an array of characters. The length of the array must be
TRANS_ERR_SIZE.
The transactions can be nested – a transaction can be called inside another transaction. When
a nested transaction finishes (successfully or unsuccessfuly), the code execution continues after
the TRANS_END of the transaction. The trans_fail function can be called in the error handler
of a nested transaction, which causes a fail of the superior transaction. Thus the exception can
be propagated.
There are three ways to start a transaction (the rest is the same):
• TRANS_BEGIN_MAIN – starts a new transaction with the given TLO. This should be used

when you are unsure if a transaction for the desired transaction TLO is already on the
transaction stack.

• TRANS_BEGIN – starts a new nested transaction with the current transaction tlo. This is
useful if you want to prevent possible errors from causing the fail of the whole current
transaction.

• TRANS_BEGIN_ANONYMOUS – for transactions which create no undo history items; useful when
you just want to use the transaction exception mechanism.

6.3.2 Undo histories

As mentioned before, every page has its own undo history; additionally, there is a special page
tlo_universe for storing undo history items of actions performed on objs. Every undo history
item corresponds to one top-level transaction, the nested transactions are included in it. Creating
an undo history item for one page does in no way affect the undo histories of other pages; the
undo histories are independent.
One undo item has two levels – the outer one for the GUI and the inner one for the kernel.
The GUI level contains the name of the item and a list of elementary kernel operations, such
as object link, anchor rehang or a property change. When undo is called, a whole GUI undo
action is undone.
To manipulate the undo histories, these functions can be used:

trans_undo(struct obj_tlo* tlo, char *error_string);

trans_redo(struct obj_tlo* tlo, char *error_string);

trans_clear_undo(struct obj_tlo* tlo); // clear the whole undo history

trans_clear_one_redo(struct obj_tlo* tlo);

trans_clear_all_redo(struct obj_tlo* tlo);

trans_merge_undo(struct obj_tlo *tlo, struct undo_gui *first, string name);

trans_rename_undo(struct obj_tlo *tlo, struct undo_gui *ug, string name);

They must not be called when a transaction is active (for obvious reasons). The following
functions enable the GUI to navigate through the undo histories:

trans_get_first_gui(struct obj_tlo* t);

trans_get_next_gui(struct obj_tlo* t, struct undo_gui *ug);

trans_get_last_gui(struct obj_tlo* t);

trans_get_prev_gui(struct obj_tlo* t, struct undo_gui *ug);

6.3.3 Geometric dependencies and topological sorting

As mentioned before, every graphic object has several anchors which serve as “geometric input”
and hangers which are “geometric output” devices. Every anchor is connected to exactly one

50 The VRR Programmer’s Manual

hanger, while a hanger can hold arbitrarily many anchors. This creates a dependency structure
of geometric objects within a page (no anchor can hang on a hanger from a different page).
In the following image you can see a dependency diagram with two graphic objects. The half-
circles represent anchors and hangers: the black half-circles pointing up are anchors, the ones
pointing down are hangers and the white half-circles are mouse-clicks.

endpointstartpoint

endpoint

2nd control point1st control point

startpoint

Cubic Bezier

endpoint
centerpoint

startpoint

endpoint

midpoint

startpoint
Circular arc

(by three points on its perimeter)

Picture 9: An example of a dependency diagram.

When any geometric property of a graphic object is changed or when an anchor of the object
is rehung on some other hanger, the object must be recomputed. But all the dependent objects
– objects whose anchors hang on the object’s hangers – must be recomputed as well. The
recomputation must be done in the right order; we use the topological order which assures that
every object is dependent on the previous objects only.
We will not describe the topological sorting algorithm, as it is well known; we only describe how
the algorithm is used in the VRR kernel.
Every page contains a special data structure for the topological sort: a list of graphic objects
tsort_list and a bitmask for flags. The flags have the following meaning:
• OF_TSORT_ACTIVE means that the tsort_list is nonempty
• OF_TSORT_PRESORT means that the objects in the list are in topological order

Chapter 6: Kernel 51

• OF_TSORT_DIRTY means that the objects in the list have been modified, but not yet recom-
puted

The topological sorting algorithm is used for these activities as well:
• Rehang anchors with acyclicity checks. If the user tries to rehang an anchor, it must be

checked that he resulting dependency graph is acyclic. For those purposes, the owner GO
of the anchor is put in the sorted list with all its dependent objects and the anchor must
not be rehung on any hanger whose GO is contained in the list.

• Manage transformation of given GOs. When performing many transformations with a
certain fixed set of GOs, it is quite useful to use the same sorted list without having to
rerun the sorting algorithm.

All the other editing actions must be done when the topological sorting is not active, because
they could change the dependency structure (by adding new dependent GOs or removing some,
for example) and make the sorted list invalid.

6.3.4 Using topological sorting
void tsort_start(struct obj_tlo * tlo);

void tsort_is_active(struct obj_tlo *tlo);

void tsort_end(struct obj_tlo *tlo);

The topological sorting is started by calling the tsort_start function for a page. This function
sets up the OF_TSORT_ACTIVE flag. Calling it when the sorting is active is forbidden. The
tsort_is_active function can be used to detect whether the sorting is active.
When the sorted list is no longer needed, the sorting should be deactivated by calling the tsort_
end function.

void tsort_insert(struct go *go, struct obj_tlo *tlo);

void tsort_insert_group(struct go_group *group, struct obj_tlo *tlo);

void tsort_insert_selected(struct go_group *group, struct obj_tlo *tlo);

void tsort_insert_hanger(struct hanger *h, struct obj_tlo *tlo);

These functions insert an object(s) together with all the dependent ones into the sorted list.
The tsort_insert_hanger function does not insert a hanger but the hanger’s parent GO.
If the given objects are already in the list, nothing is done. Calling these functions when the
sorting is active is forbidden.

void tsort_insert_flag(struct go *go, struct obj_tlo *tlo);

void tsort_insert_group_flag(struct go_group *group, struct obj_tlo *tlo);

void tsort_insert_selected_flag(struct go_group *group,

struct obj_tlo *tlo);

void tsort_insert_local_selected_flag(struct go_group *group,

struct obj_tlo *tlo);

Some operations need a set of GOs in topological order as the input. But in the sorted list, there
are the dependent objects as well; in that case it is necessary to mark all explicitly inserted
GOs by a flag GOF_TSORT. To insert some objects with flags, use these functions instead of the
previous ones.

6.4 Hooks

Hook are used to inform some other modules (on which the kernel does not depend) that some-
thing important was changed in kernel data structures. Any module can register its callbacks to
some parts of the data structures; the kernel will call the callbacks on certain specified occasions.
There are four kinds of hooks: object, GO, transaction and unit. For each hook kind, there
is a specific hook structure type which contains pointers to hook callbacks and a void * for
any additional data. To use hooks, a module should allocate its own hook structures, fill the
callback pointers and the additional data accordingly (or set NULL to those pointers for which it
does not want to register any callback), and then register the hook by calling a kernel function.

52 The VRR Programmer’s Manual

When an action happens in the kernel, all hook callbacks registered for the appropriate action
are called with a pointer to the registered hook structure as an argument. The hooks can then
be removed, even during the call of a hook callback.
After registering, the hook structure is filled with pointers which link it in the kernel hook list;
thus it is forbidden to have a hook structure registered more than once at the same time.
Object and unit hooks are global for the whole kernel, whereas GO and transaction hooks are
local for pages. Now we give a description for the four hook types.

struct obj_hook* obj_hook_add(struct obj_hook *hook);

struct obj_hook* obj_hook_remove(struct obj_hook *hook);

struct obj_hook* obj_hook_remove_by_data(void *data);

struct go_hook* go_hook_add(struct obj_tlo *tlo, struct go_hook *hook);

struct go_hook* go_hook_remove(struct obj_tlo *tlo, struct go_hook *hook);

struct go_hook* go_hook_remove_by_data(struct obj_tlo *tlo, void * data);

6.4.1 Object hooks

The object hooks handle the changes of non-graphic kernel objects. They provide these callback
calls:
• Link – an object was linked into the universe
• Unlink – an object was unlinked from the universe
• Select – an object was selected
• Unselect – an object was unselected
• Property create – a new property was created for an object
• Properties changed – one or more properties were changed for an object
• Property delete – a property was deleted from the object

The Link and Unlink hooks are not called recursively; if the object has a subtree of descendants,
no hook is called for them.

6.4.2 GO hooks

• Link – a GO was linked into the page
• Unlink – a GO was unlinked from the page
• Relink – a GO was relinked between groups inside the page
• Select – a GO was selected
• Unselect – a GO was unselected
• Property create – a new property was created for a GO

• Properties changed – one or more properties was changed for a GO

• Property delete – a property was deleted from the GO

• Change – generic information about changes for the Visualization (see Section 7.4 [The
Visualisation], page 64).

Like for the object hooks, the GO Link and Unlink hooks are not called recursively.

The Visualization hook

The Visualization needs a special hook go_changed which informs it about various changes. The
changes can be distunguished by the data passed as a callback argument of type const struct
changed_data_generic*. It is pointer to one of these structures:

transformed_data
After a transformation, the transformation matrices are passed together with bound-
ing boxes before and after the transformation. The change kind is CK_TRANSFORMED.

Chapter 6: Kernel 53

altered_data
After a bounding box preserving change, which may be for example a change of the
color, the data have the CK_ALTERED kind.

changed_data
For any other changes the CK_CHANGED kind is used.

6.4.3 Transaction hooks

The transaction hooks inform about changes in transaction histories. The transaction histories
are local (and independent) for pages, so transaction hooks are local for pages, too.
• New – a new item in the undo history was created
• Delete – an item of the undo history was deleted
• Update – un item item of the undo history changed its name
• Undo – one item was undone
• Redo – one item was redone
• Saved – the “saved” flag of a page (or a document) was set

6.4.4 Unit hooks

The unit hooks inform about changes in the unit list. For description of units, see Section 6.5.2
[Units], page 55.
• Add – a new unit was added into a slot
• Unuse – a unit was set as unused
• Change – the multiplier of a unit was changed
• Default – the default unit of a certain quantity was changed

6.5 Properties

The kernel objects store various data of various types and various meaning:
• geometric properties, like eccentricity of an ellipse, control point weights of a Bézier curve
• graphic properties, like stroke color, fill color, line width, invisibility
• text or TEX text source code
• any additional user-defined data

All these data can be accessed using an uniform kernel interface. Some of the properties are
just regular data structure members, while the others are virtual with read and write callbacks
which can cause complex recomputations.
One property is stored in a struct prop structure. Its contents are:
• string key – a unique identifier of the property in the given object. It contains the displayed

name of the property.
• prop_value value – a union for storing various property values.
• u8 type specifies the data type of the property value stored.
• u8 subtype provides a more subtle differentiation of property values within the data type.
• u8 unit – an index into unit array See Section 6.5.2 [Units], page 55. It defines the display

multiplier of the property value (used only for real number values).
• u8 flags – a combination of the following:

• PTF_VIRTUAL means that the property is virtual. See Section 6.5.3 [Virtual properties],
page 55.

• PTF_READ_ONLY means that changing value of the property always fails.

54 The VRR Programmer’s Manual

• PTF_SAVE means that the property is saved when saving the object.
• PTF_RECYCLABLE means that the property is recycled by the GUI recycler (see Sec-

tion 7.6.4 [Property Recycler], page 72).

6.5.1 Property types and subtypes

The value of a property is a union which can store an unsigned integer, a real number, a string
or a pointer. The type of the property determines which of the possibilities is used. The subtype
provides a more subtle differentiation of property values within the data type – it defines the
semantics and allowed values for the property, which is used mainly by the GUI.
Currently, VRR supports these property types and subtypes:
• PT_UNS

• PTU_BOOLEAN – a logical value, zero or one.
• PTU_FONT – a font ID. See [Property font], page 45.
• PTU_CONIC_TYPE_0P

• PTU_CONIC_TYPE_1P

• PTU_CONIC_TYPE_2P

• PTU_CONIC_TYPE_3P – values of the “conic” property for elliptic arcs with zero, one,
two or three points on the perimeter. See [Property conic], page 44.

• PTU_CAP_STYLE – the line cap style, one of PSC_BUTT, PSC_ROUND, PSC_PROJECTING.
• PTU_ALIGNMENT_X

• PTU_ALIGNMENT_Y – alignment values for a text and TEX-text object. See [Texts],
page 44.

• PTU_ARROW_FRONT

• PTU_ARROW_BACK

• PTU_ARROW_ALIGN – arrow appearance values. See Section 6.2.2.9 [Arrow], page 46.
• PTU_COLOR – a RGBA color coded into one 32-bit number.
• PTU_UNSPECIFIED – any other unsigned integer value.

• PT_REAL

• PTR_COORDINATE – a coordinate in millimeters.
• PTR_ANGLE_PI – an angle in radians of value within < 0;π >.
• PTR_ANGLE_2PI – an angle in radians of value within < 0; 2π >.
• PTR_ANGLE_4PI – an angle in radians of value within < −2π; 2π >.
• PTR_NON_NEGATIVE – any non-negative real number.
• PTR_REFERENCE – a number within < 0; 1 >.
• PTR_UNSPECIFIED – any other real number.

• PT_STRING is stored in our string data structure.
• PTS_LARGE_TEXT – a large text. This is used mainly for source texts of text or TEX-text

objects.
• PTS_FILE_NAME

• PTS_UNSPECIFIED

• PT_POINTER is used internally for various data which do not fit into the standard property
value.
• PTP_TRANSFORM – a transformation matrix.
• PTP_TEX_PROCESS – data for storing TEX output.
• PTP_UNSPECIFIED

Chapter 6: Kernel 55

An object cannot contain two or more property entries with the same key identifier. If you try
to set a property with the same key, type and subtype as those of an existing one, the original
property is rewritten. If the key is the same but the type or subtype does not match, the attempt
causes a transaction fail.

6.5.2 Units

Property values which are real numbers have an additional feature – units. A unit defines a
multiplier used for displaying thu number in the GUI. All property values stored use a canonical
internal unit; for example, all coordinates are in millimeters.
The formula for displayed values is: < native >=< displayed > ∗ < multiplier > .

The units are stored in an array and the properties contain their indices. When the user
changes the display unit, he only modifies the property unit index and the internal property
value is remains unchanged.
There are properties of the following four quantities:
• PQ_LENGTH for longitudinal properties
• PQ_ANGLE for angular properties
• PQ_REFERENCE for parameters within < 0; 1 >

• PQ_NONE for non-measurable properties, such as control point weights

The quantity of a property is determined by the type and subtype and can be found in the
following way (for a property prop): prop_subtype2quantity[prop->type][prop->subtype].
Default unit

Every quantity has a default unit which is stored in uns unit_default. If the unit of a property
is PROP_UNIT_MAX or a deleted unit, the default unit (for the appropriate quantity) is used
instead. The default unit cannot be PROP_UNIT_MAX.
Deleting units

Checking whether a certain unit is used in some objects would be too slow. Therefore, a unit
cannot be simply deleted. Instead, it is marked as unused and it cannot be assigned to properties
any more. If a property that has a deleted unit needs to be displayed, it uses the default unit
instead.
The default unit cannot be deleted.

6.5.3 Virtual properties

The properties have a non-trivial overhead (because of the key, type and subtype identification,
and other data). Also, the GEOMLIB cannot use the property mechanism, as it is independent
of the kernel. Moreover, some properties have a special meaning and need some additional value
checks (sometimes depending on other property values as well).
For these reasons, the virtual properties were introduced. A virtual property looks the same
as a regular one; but some special callbacks handle the reading and writing of its value. The
callbacks are called by the property manipulating functions.
The information about one virtual property is stored in the struct prop_virtual structure
(common for all properties of the same key, type and subtype belonging to the same GO subtype).
It contains the following callback pointers:

prop_value (*get)(struct o* o)
Returns the value of the property the object o.

void (*set)(struct o* o, prop_value new_value)
Tries to change the value of the property. This function may fail because of a
numeric error or a forbidden value. It can also change some other variables of the
object o.

56 The VRR Programmer’s Manual

void (*set_low)(struct o* o, prop_value new_value)
This function is called by the undo to change the value – it does not trigger any
callback calls.

uns (*get_unit)(struct o* o)
Returns the property unit. (The property must have a unit.)

void (*set_unit)(struct o* o, uns unit)
Changes the unit. (The property must have a unit.)

List of virtual properties

Every object has its own property list. In the beginning of the list, there are non-virtual
properties, and the last non-virtual property points to the first virtual property. Each GO
subtype has its own list of virtual properties. The last virtual property is always the “name”
property.

6.6 Clipboard

To enable Copy & Paste operations, the VRR kernel implements a clipboard. The clipboard is
a regular page tlo_clipboard which is linked in the zombie and for which a reference is kept.
The GUI even enables the user to edit the clipboard contents. When some objects are copied
into the clipboard, they are selected; and when the clipboard contents are to be pasted into
another page, only the selected ones are pasted.

The most important clipboard functions are clipboard_duplicate_go and clipboard_copy_
selected_go.

clipboard copy selected go

void clipboard_copy_selected_go(struct go_group *source,

struct go_group *target, struct go *after,

uns reversed)

This function copies all selected GOs from the source group into the target group. The created
GOs are linked after the after GO. If reversed is zero then created objects are linked in same
order as they are in source. Otherwise, they are linked in the reversed order.

The clipboard_copy_selected_go function must be called in a transaction on the target’s
page and the topological sort must be passive is both pages. The source and target pages must
be different.

struct go* clipboard_duplicate_go(struct go *original)

This function receives a graphics object original and creates and returns its duplicate.
void clipboard_paste(struct go_group *target, struct go *after,

uns reversed)

This function pastes the contents of the clipboard into the target group. It just calls clipboard_
copy_selected_go.

uns clipboard_copy(struct go_group *source, const char* name_trans,

char* error_string, uns reversed)

This function copies the selected GOs in the source page into the clipboard. This function only
removes all the previous contents of the clipboard and calls clipboard_copy_selected_go. It
must be called in a transaction on the source page.

void clipboard_cut(struct go_group *source, uns reversed)

This function moves the selected GOs from the source page into the clipboard. Because of
the locality of undo histories, the GOs cannot be moved between pages directly; instead, the
function copies the selected content of the source page into the clipboard and the original GOs
are removed.

Chapter 6: Kernel 57

6.7 Strings

The string mdule is used for storing strings. It takes care of deallocations using the reference
counts. It also prevents from storing the same string several times.
A string is handled using a variable of type string. It is a pointer to the following string_entry
structure:

uns length
The length of the string, not including the terminating ‘\0’ character.

uns ref_count
The number of references.

struct string_entry *dead_next
A node of the dead list. See below.

char text[1]
A null-terminated array of characters which is stored in this string.

All the strings (string structure pointers) are stored in a hash table. The key into this hash
table is the array of characters. The hash table contains pointers to all used strings to avoid
memory leaks.
Most referenced objects are freed when the reference count decreases to zero. This is also true for
strings if there is no transaction running. Strings which lose the last reference in a transaction
are freed at the end of the transaction. So if a string is used only during one transaction,
referencing the string is not necessary.

58 The VRR Programmer’s Manual

7 GUI

7.1 GUI Overview

The aim of VRR’s GUI is to provide a simple and easy-to-use graphic interface without lots of
buttons or complicated windows. We have also tried to minimize the number of pop-up modal
windows; most messages are output into a status bar instead of opening a message window.

As the whole program is written in the C language, we decided to create the GUI using the
GTK. However, like the rest of VRR source code, the GUI prefers our own data types and data
structures defined in VRRLIB to those of GObject and GLib (for effectivity and uniformity
reasons). See Chapter 4 [VRRLIB], page 11 for description of VRRLIB.

The GUI contains several windows (mostly independent on each other) and several high-level
mechanisms: the Command Structure and the GO Factory. The Command Structure defines
the structure of all menus and toolbars, generates and maintains menus and toolbars and for
each command it controls and evaluates the conditions under which it can be activated. The
GO Factory is a mechanism similar to a finite automaton which creates new graphic objects.
(They are described in more detail in the following sections.)

The source code of GUI consists mainly of callbacks for GTK signals and our kernel hooks
(see Section 6.4 [Hooks], page 51). The purpose of kernel hooks is to inform (via callbacks)
other parts of VRR about data structure changes and other actions. Almost no copy of kernel
data structures is kept in GUI; editing actions are performed on kernel data directly. Windows
displaying the same data are informed about data updates by kernel hooks as well.

7.2 Windows

VRR has several windows, mostly non-modal and independent on one another. When VRR starts,
the Main Window is opened and if the user closes it, he terminates the program.

Most VRR windows have a “common ancestor” – the window structures begin with several data
members common for all. These include window type identification, a Scheme proxy and a
status bar with a status bar ID. Most window data structures are defined in the ‘gui/main.h’
file.

#define WIN_O_MAGIC u8 type; SCM proxy; \

GtkWidget * statusbar; gint context_id

/* The ancestor */

struct window { WIN_O_MAGIC; };

/* A window */

struct wnd_univ_browser

{

WIN_O_MAGIC;

...

};

The ancestor structure is used, for example, in the context (see Section 7.3.1 [The Context],
page 61), for status bar messages and error messages. Usually, when an error occurs during
an action not connected to any fixed window, the message is output into the status bar of the
current context window.

In the following subsections, we describe the most important VRR windows. However, we will not
describe all windows in detail, as there is nothing very interesting on the windows themselves. All
the interesting features – the Command Structure, property editors, GO Factory – are described
in their own sections.

Chapter 7: GUI 59

VRR also provides some macros for the “Open file” and “Save file” dialogs. They store the last
used directories (one for each) and update them automatically. The save dialog also asks if to
overwrite an existing file. They can be found in the ‘gui/dialogs.h’ and ‘gui/dialogs.c’ files.

OPEN_DLG_START(_title, _extra_widget, _filename)

OPEN_DLG_END

SAVE_DLG_START(_title, _extra_widget, _filename)

SAVE_DLG_END

and a SUGGEST_FILENAME(_o, _ext, _output) macro which generates the suggested save file-
name for the given object, extension and the last used save directory. They are used like this:

OPEN_DLG_START("Open file ...", NULL, NULL)

{

// now do something with each filename selected

// the current filename is ’filenames[i]’

}

OPEN_DLG_END

SUGGEST_FILENAME(document, "pdf", sugname);

SAVE_DLG_START("Export PDF file ...", table, sugname)

{

// use the one filename ’filename’

}

SAVE_DLG_END

7.2.1 The View

Files: ‘gui/main.h’, ‘gui/view.c’, ‘gui/moving.c’

The View is the most important editor window. It contains the interface of the GO Factory (see
Section 7.5 [The GO Factory], page 65), a drawing area of Visualisation (see Section 7.4 [The
Visualisation], page 64) (displaying the contents of a group), a toolbar and a pop-up menu with
almost all available commands.

7.2.2 The Universe Browser

Files: ‘gui/main.h’, ‘gui/univbrowser.c’

The Universe Browser shows the tree-like structure of all existing kernel objects in the universe.
It does not keep any copy of the data; it uses a GtkTreeModel object which provides the interface
between kernel structures and the GtkTreeView widget. This is described in Section 7.8.1 [The
GtkTreeModel Interface for Internal Structures], page 74.

7.2.3 The Property Editor

Files: ‘gui/properties.h’, ‘gui/properties.c’

The Property Editor is a window with dynamically generated contents. It displays the property
editor widgets (described in Section 7.6 [Property Editor Widgets], page 70) for all properties
of a certain object or for the common properties of all selected objects.

There are two different Property Editors: the context one and the non-context one. The former
displays the properties of all selected objects, if there are any, or the properties of the last used
context object (see Section 7.3.1 [The Context], page 61). If there is a selection, then only the
editors for properties common for all selected objects are shown (with the values of the first
selected object). Any change is done to all selected objects at once. The latter displays the
properties of one fixed object.

The Property Window has many hook handlers for property changes, adding and removing of
properties, context changes etc. After any change of property values, the widgets are updated;
after any change of the property list the window’s property list is rebuilt.

60 The VRR Programmer’s Manual

If the object is deleted, the non-context Property Window is closed. The context window displays
the “no object to display” message when there is no context object nor any selection.

Almost all the intelligence of Property Editor is contained in the property editor widgets, see
Section 7.6 [Property Editor Widgets], page 70 for more details.

7.2.4 The Text Editor

Files: ‘gui/main.h’, ‘gui/fonts.c’

The Text Editor is a property editor containing several property editor widgets (see Section 7.6
[Property Editor Widgets], page 70) specific for a text or TEX-text object. It can also be used
for editing a large text property of any object, in which case the specialized property widgets
are hidden.

The text in the text editing area can be loaded from or saved to a file in the local character
encoding (we convert it between the local charset and the UTF-8 encoding used in GTK using
iconv). VRR also enables the user to edit the text in an external editor – it creates a child
process and waits for it to terminate, which makes VRR look frozen. This also causes problems
with editors which fork their process and terminate the original one, like gvim.

For an ordinary text object, the Text Editor displays the list of all installed fonts as obtained
from FontConfig.

7.2.5 The Global Settings

Files: ‘gui/main.h’, ‘gui/dialogs.c’

This window contains some property editor widgets (see Section 7.6 [Property Editor Widgets],
page 70) for properties of the universe. These settings are loaded during startup and saved
during exit automatically (by the kernel). The meaning of the settings is explained in the User’s
Manual.

7.2.6 The Undo History Window

Files: ‘gui/main.h’, ‘gui/undohistory.c’

The Undo History window shows the undo history items of a tlo or the universe (the “global
undo history”). Similarly to the Universe Browser window, it does not keep any copy of the
data; it uses a GtkTreeModel object which provides the interface between kernel structures and
the GtkTreeView widget. This is described in Section 7.8.1 [The GtkTreeModel Interface for
Internal Structures], page 74.

7.2.7 The Unit Manager

Files: ‘gui/main.h’, ‘gui/properties.c’, ‘gui/units.c’

The Unit Manager displays the lists of all units (per quantities) and lets the user edit them. The
unit lists are stored in the same GtkTreeStore objects which are used in unit lists of property
editors, which makes all changes appear in the lists at once. Thus, in this case a copy of kernel
structures is maintained (using the kernel unit hooks). See Section 7.6.2 [Unit Lists], page 72.

7.2.8 The Plugin Manager

Files: ‘gui/main.h’, ‘gui/plugins.c’

The Plugin Manager displays the list of all loaded plugins and the registered plugin functions as
obtained from kernel. It enables the user to load plugins and unload unloadable plugins. Here
again, the lists are stored in GtkTreeStore objects and maintained using kernel plugin hooks.

The window does not display GUI plugin functions (see Section 10.4 [GUI Plugin Interface],
page 97) which are registered to the Command Structure.

Chapter 7: GUI 61

7.3 The Command Structure

Files: ‘gui/cmdmgr.h’, ‘gui/cmdmgr.c’
The Command Structure defines the structure of all menus and toolbars, generates and maintains
menus and toolbars and for each command it controls and evaluates the conditions under which
it can be activated. Each menu or toolbar instance is generated according to one common
template and a specified location which defines what commands should the instance contain.
For example, the “File/Save” command is located in the View menu and Universe Browser
menu, not in the Main Window menu; but all these are generated from the same template.
The command structure template has a stamp and each instance has a stamp, too. The stamp is
incremented after every command structure change (not including changes of command states).
When a menu or toolbar instance needs to be refreshed, the stamps are compared and in case
that they differ, the instance is rebuilt. Otherwise, all the items inside are updated – en-
abled/disabled, (un)checked – only.

7.3.1 The Context

The context is a collection of several things in the GUI which are currently significant: the
current window, the last used object, the group containing the last used objects, the parent
document and tlo of the group. It also stores the current selection bitmasks and selected GO
counts for meta selection and for selection inside the context group (counts of selected GOs per
each GO type).
The context affects mainly the behaviour of the menus and toolbars – its contents define which
commands can or can not be activated. But it is used for other purposes as well; for example,
many user messages are written into the status bar of the context window.
The context can be changed only using the following function:

void change_context(struct window * window, struct go_group * group,

struct o * o);

These three arguments determine all the other contents of the context. After a context change,
some internal GUI callbacks are called, like those of the Context Property Window. Any of the
context object pointers can be NULL as well. A pointer may become NULL, for example, when
the original object is unlinked or the window is closed. The selection bitmasks and counts are
updated after each selection change or context group change.

7.3.2 Command Definitions

The command template is stored in the file ‘gui/commands.c’. The command structure is a
tree-like hierarchical structure where each node has a list of subcommands (commands with
nonempty lists are called command categories) and a pointer to the next command in the same
category. The command definition structure is this:

struct cmd

{

char * title;

char * description;

uns type;

uns flags;

char * icon_path;

GdkPixbuf * icon_pixbuf;

int accel;

GdkModifierType modifier;

union

{

struct

{

uns request_mask;

int request_cnt;

62 The VRR Programmer’s Manual

uns request_type;

void (*modify_state_f)(struct cmd *, GtkWidget * widget);

void (*action_f)(void *);

} func;

struct

{

struct of_state * of_state;

} op;

struct

{

uns flags;

struct cmd * first;

struct cmd * selected;

} ctg;

} spec;

struct cmd * parent;

struct cmd * next;

};

The type can be one of CT_FUNC, CT_FACTORY_OP, CT_CATEGORY, CT_SEPARATOR and defines
which part of the union spec is used.
Function commands

The function commands have type equal to CT_FUNC. They are the most common menu or
toolbar items. They contain an action function action_f to be called, a context request defining
when the function can be called (and the command enabled) and a modify_state_f function
to modify the command state additionally. The command state (enabled, visible, checked, etc.)
is stored in the flags bitmask together with the command location and other flags.
The command request consists of:
• a bitmask request_mask of all object types for which the command can be used. The

command is enabled if no selected object has a type which is not included in the mask.
• the requested object count – request_cnt. Any positive value means that exactly the

requested number of objects should be selected. Zero means that any count is suitable, and
minus one stands for any nonzero object count.

• the request type request_type, one of RT_META, RT_GROUP and RT_ANY. The first one means
that the request count applies only to meta objects (not GOs). The second one means that
the count applies to the count of selected GOs in the context group and RT_ANY means that
both selections are evaluated together.

For example, consider the following command:
{ "Save", "Save the file", CT_FUNC, CL_UB_MENU | CL_VIEW_MENU | CS_VIS_EN,

0, 0, GDK_S, GDK_CONTROL_MASK,

{ .func = { VTM_DOCUMENT | VTM_CT_DOC, 1, RT_META,

NULL, &on_file_save } },

NULL, &file_save_as_cmd };

It requests exactly one document (in the meta selection or in the context), is located in the
Universe Browser menu and in the View menu, and is visible and enabled before the context
evaluations take effect.
Context Match Evaluation and Command Execution

When a command state needs to be evaluated, the command request is compared with the
current context using the following function:

int context_matches(struct cmd * cmd);

First, the context window, group, tlo and document are tried. If any of them satisfies the
request, the conditions are fulfilled and the object will be passed as the void * argument of the
command’s action function action_f later when the command is executed. If it is not the case,
the selection is tried (meta selection or selection within a group, depending on the request type).

Chapter 7: GUI 63

If neither the selection is suitable, then the context object (the last used object) is tried and if
matches, it will later be passed as the void * argument of the action function. The selection is
not passed as any argument; in case that the action function gets a NULL as the argument, it
uses the selection.

After the evaluation of the context_matches function, the modify_state_f function is called
(with the menu/tool item widget as an additional argument) to alter the command state ac-
cording to some additional criteria.

To prevent possible errors, the context match is verified one more time, just before the com-
mand execution. It might happen that the menu or toolbar item has been activated but the
request ceased to be fulfilled before the activation signals were distributed to our callbacks. Or
the modify_state_f function just had violated the evaluated flags and re-enabled a disabled
command. Both cases are detected with an additional context check and if the context does not
match, the command execution is cancelled.

Factory Operation Commands

These commands (with type equal to CT_FACTORY_OP) switch the GO Factory (see Section 7.5
[The GO Factory], page 65) into the given state stored in of_state. They have no context
requests as the states of GO Factory commands are evaluated in a special way.

Categories

Category commands (with type equal to CT_CATEGORY) are not actually commands, they are just
branching nodes and have a list of subcommands (starting with first). They create submenus
in menus, in toolbars, they are just expanded. In the View toolbar, some categories have their
icons and can expand their contents into the right View toolbar.

The additional flags store the flags of the category contents.

Separators

The separators have type equal to CT_SEPARATOR and represent separator menu items (invisible
in toolbars).

7.3.3 Command Editing Actions

The hard-coded initial command template can be modified, commands can be added and/or
removed dynamically. That can be done using the function

void add_new_command_into(struct cmd * cmd, struct cmd * category);

which adds the command cmd to the start of the category category and
void add_new_command_after(struct cmd * cmd, struct cmd * after);

which adds the command cmd after the command after. To remove a command, use
void remove_command(struct cmd * cmd, struct cmd * from);

7.3.4 Plugin Menu Functions

A special menu command category plugin_ctg is reserved for plugin functions. A GUI plugin
can register itself into the command structure, which creates a subcategory in the plugin category
and assigns an ID to it.

This is done by the function
int plugin_menu_register(char * desc);

returning the plugin ID. The following functions can be used for adding and removing menu
commands, adding commands in a more convenient way or unregistering the plugin. After
unregistering, the plugin menu subcategory and all commands added conveniently are destroyed
automatically and the plugin ID becomes invalid.

All these functions return zero iff they are successful.

64 The VRR Programmer’s Manual

int plugin_menu_unregister(int plugin_id);

int plugin_menu_command_register(int plugin_id, struct cmd * cmd);

int plugin_menu_command_register_conv(int plugin_id, char * title,

char * desc, uns request_mask, int request_cnt, uns request_type,

void (*action_f)(void *));

7.4 The Visualisation

Files: ‘gui/visualisation.h’, ‘gui/visualisation.c’
The Visualisation is an interface between the VRR kernel and VCL. There is one instance of
Visualisation in each view and is responsible for displaying GOs and control objects. It consists
of a VCL canvas, several VCL nodes (mainly a lazy expanding area) and some additional data.
A LE-area is used for displaying all GOs. Callbacks from the LE-area are translated to questions
for kernel and hooks received from kernel are translated to notifications for the LE-area. Zoom
and scrolling are implemented using an affinity node before the LE-area.
There are three coordinate systems in the Visualisation. Pixel coordinates of GDK window
are clear. The view coordinates (vcoords) are centered in the center of the View, with the
x-axis parallel to window borders, y-axis flipped (in comparision to pixels) and distance one
is exactly one millimeter (this is the coordinate space of the root VCL node). The image
coordinates (coords) are coordinates in which GOs which are displayed – so they are vcoords
after application of the chosen zoom and rotation. There are several functions for conversion
between coordinate spaces (for example visualisation_coords_to_vcoords()).
There are three three groups of functions for manipulation with the Visualisation. The first
group is for manipulating with several control objects, the second group is for manipulation
with the transformation between coords and vcoords and the third group contains the aforesaid
functions for conversion between coordinate spaces.
Control objecs are usually some crosses or rectangles which are used to implement several gui
tools, like the transformation tool. There are the following functions for manipulation with the
control objects of the transform tool:
• visualisation_set_gadget_visible() for enabling/disabling,
• visualisation_set_center_gadget(),
• visualisation_set_xaxis_gadget(), and
• visualisation_set_yaxis_gadget() for setting their position – the position of the rest is

defined by the bounding box of selection),
• visualisation_set_tf_move(),
• visualisation_set_tf_resize(),
• visualisation_set_tf_rotate(),
• visualisation_set_tf_skew(),
• visualisation_unset_tf_move(),
• visualisation_unset_tf_second(), and
• visualisation_unset_tf_skew()) for the Santiago’s transform tool,
• visualisation_set_grid() and
• visualisation_unset_grid() for grid – the t argument is used to specify the grid ar-

rangement
• visualisation_gui_rectangle_update() and
• visualisation_gui_rectangle_destroy()) for the rectangular selection rectangle
• visualisation_set_snap() and

Chapter 7: GUI 65

• visualisation_unset_snap() – unused functions for the Fifi
• visualisation_gui_fifi_update() and
• visualisation_gui_fifi_destroy() – used Fifi functions.

The implementation of anchor/hanger control objects is important and less trivial. It is done
using another LE-area, which does not have any affinity node associated, so anchor and hanger
coordinates have to be recomputed to vcoords. After any transformation change (scrolling) this
LE-area must be flushed. The associated functions are visualisation_set_show_anchors_
mode() and visualisation_set_show_hangers_mode(), their mode argument can be set to
VIS_SHOW_NONE, VIS_SHOW_ALL, VIS_SHOW_SELECTED or VIS_SHOW_SPECIFIC based on the re-
quest for no A/H, all A/H, A/H of selected GOs or A/H of a specific go (the next argument).
Functions for manipulation with the transformation can be divided to absolute:
• visualisation_set_orientation()

relative:
• visualisation_move()

• visualisation_scale()

• visualisation_rotate()

• visualisation_transform()

and special:
• visualisation_absolut_move()

• visualisation_center()

7.5 The GO Factory

Files: ‘gui/main.h’, ‘gui/creatego.c’, ‘gui/view.c’
The GO Factory is a mechanism similar to a finite automaton which creates new graphic objects.
Each state has a desired input, such as a hanger, an anchor, a property value etc. You set the
starting state of an operation and then, after getting the input values from the user, proceed to
the next states until the object is created. Then the GO Factory returns back to the starting
state and the user can create another GO in the same way; or you set a different starting state.
The creation process can be cancelled at any time when needed; for example, when the GUI
needs to respond to another user action not related to GO Factory (in that case, it has to cancel
the GO Factory operation to prevent errors, which is explained in the further description).
Every state can also have a function which is called before proceeding to the next state. This
function can create and link GOs, store a GO pointer in the tmp_go variable, and can access the
input values obtained so far and perform some actions if needed. The GO Factory can create a
special hanger for the mouse cursor on which some object anchors can be hung temporarily. It
also enables the user to undo some partial actions by the “Step back” command which uses the
undo history.

7.5.1 State definitions

The GO Factory state structure is defined like this:
struct of_state

{

uns flags;

enum of_input_kind input_kind;

uns input_type;

uns input_subtype;

union

{

66 The VRR Programmer’s Manual

struct dist_pass_result dpr;

struct prop prop;

} value;

char * description;

void (* action_func)(struct of_state *);

void (* cleanup_func)(struct of_state *);

struct of_state * prev;

struct of_state * next;

struct undo_gui * prev_undo_item;

struct go * tmp_go[OFR_CNT];

};

The input_kind specifies what input is wanted from the user. Its value is one of OFIK_NONE,
OFIK_DPR, OFIK_PROP, OFIK_SEL, OFIK_TRANSFORM, and OFIK_TF. The last three ones are special
and used in the selection and transformation tools; OFIK_NONE is used only in some special GO
Factory states. The OFIK_DPR input kind means that the input is the result of a snap distance
pass, and OFIK_PROP stands for a property value.
The action_func function is called before proceeding to the next GO Factory state (after the
state input value has been filled). It is called inside a transaction on the current context tlo, so
the function can use transaction fails for error reporting. The of_state function argument is a
pointer to the current state.
The cleanup_func is called when moving back and undoing the effects of the state, and after
a successful GO creation as well. It does not have to unlink any created objects; that is done
by undo automatically. It should only free any additionally allocated memory or release all
references that the action function created.
There are some predefined GO Factory states including the most important ones:

struct of_state ofs_start;

struct of_state ofs_end;

These two states do not take part in creation of any go directly. But the state structure is linked
in such a way that the prev pointer of all the starting states points to the ofs_start state and
the next pointer of all the last states points to ofs_end.

7.5.1.1 Snap result states

If the input kind is OFIK_DPR, then the value of struct dist_pass_result is expected to
be filled. It contains the snap result (obtained by an R∗-Tree distance pass), which can be a
hanger, an anchor, a GO with a parameter of the point position on the GO curve, an intersection
represented by two GOs and a parameter, or an unsnapped point defined by its coordinates. The
state’s input type is the desired dist_pass_result.type determining which of the possibilities
is the current one.
This is the structure definition:

struct dist_pass_result

{

uns type;

union

{

struct { struct go *go; struct geom_nearest geom; } go;

struct { real dist; struct hanger *hanger; } hanger;

struct { real dist; struct anchor *anchor; } anchor;

struct { real dist; struct go *go1, *go2;

struct geom_intersection geom; } intersection;

struct { real dist; struct geom_point point; } point;

} data;

};

During the step-by-step creation, the input hangers are specified. But they may not yet exist.
For example, if the “snap to lines” mode is set on, then a hanger can be specified by a curve
GO and a parameter defining a point position on the curve. The hanger itself is created no

Chapter 7: GUI 67

sooner than it is really needed, which is when an anchor of the created GO needs to be hung on
it (during the execution of the state’s action function). In the meantime, the GO Factory stores
the snap result only; and if the effects of the action function are undone (because of Step back
or transaction fail) the hanger is destroyed as well.

This also means that, apart from the “main” created GO, the GO Factory can create some
parametric points, intersection points, or mouse-clicks as well.

7.5.1.2 Property value states

Another possible input kind is OFIK_PROP for property values – any property value which can be
stored in VRR’s kernel. The state’s type and subtype express the property type and subtype,
respectively, and the property value is stored in the struct prop structure.

To gain the property input from the user, the GO Factory creates a property editor widget (see
Section 7.6 [Property Editor Widgets], page 70) in the View status bar and lets the user enter
a value. The property widget does some basic value checks according to the property type and
subtype; any additional checks should be done in action functions of the states. A state can
refuse the obtained value using transaction fail.

So far, this feature is rarely used for getting numeric input from the user; usually, all the
numbers are set to some default values and can be modified in the Property Editor when the
GO is created. This makes the creation process a bit faster; on the other hand, the user has to
switch between the View and the Property Editor to get the desired result.

Picture 10: The View status bar showing a property value editor.

7.5.2 Transitions between states

In the following image you can see an example of transitions between GO Factory states. The
starting state above is set by a user action (clicking the appropriate toolbar icon). Then the
editor waits for input of the current state (in this case, a hanger), and when the input is ready,
it performs some actions using the input obtained and in case of success it moves to the next
state. If an error occurs, which is usually a transaction fail, the GO Factory refuses the input,
the current state remains unchanged, the editor outputs an error message and waits for another
input from the user. After a success in the last state, the GO Factory returns to the starting
state again. Additionally, in any state except for the starting one the user can move back or
cancel the whole creation at once.

The green arrows show state transitions in case of success, the red ones are for errors and the
black ones show the possible steps back.

68 The VRR Programmer’s Manual

Step 1 – the first focus
Desc: “Choose the first focus . . . ”

Input: A hanger

What to do: Create a segment hang-

ing on the given hanger and the moving

mouse cursor hanger; link it.

Step 2 – the second focus
Desc: “Choose the second focus . . . ”

Input: A hanger

What to do: Unlink the previously cre-

ated segment. Create an ellipse defined

by two foci and point with the two given

hangers as foci and the moving mouse

cursor as the third point on the ellipse’s

perimeter. Link the ellipse.

Step 3 – a point on the
perimeter
Desc: “Choose a point on . . . ”

Input: A hanger

What to do: Rehang the ellipse from the

moving mouse cursor to the last given

hanger. Update the ellipse’s style prop-

erties with the current settings.

Picture 11: Transition diagram for states creating an ellipse (by two foci and a point).

The creation process is also called an operation. The basic operation actions are these:
void factory_op_start(struct go_group * group,

struct of_state * state, char * desc);

void factory_op_break(void);

void factory_op_step(void);

void factory_op_step_back(void);

The current state is accessible as factory.state. Here the editor can find out what input to
get from the user (according to the type, subtype etc). When the input is ready, it fills the
factory.state->value state value and calls the factory_op_step function. Then the GO
Factory does the following:
• Checks if the filled input is really the desired one.
• Starts a new transaction in which it may process the input additionally (e.g. obtain a

hanger by creating a parametric point and getting its hanger, or creating a mouse-click if

Chapter 7: GUI 69

the point was not snapped to any hanger) and executes the factory.state->action_func,
if there is any.

• If the transaction fails, the GO Factory does the cleanup (using the factory.state-
>cleanup_func, too), stays in the same state and waits for some other input.

• If the transaction succeeds, it proceeds to the next state and waits for more input; or, if
this was the last state, returns to the starting state again.

The factory_op_step_back function undoes the effect of the previous state (including the
cleanup) and returns the GO Factory to the previous state.
The factory_op_break function undoes all actions from the starting state and moves to the
starting state again. This function should be called before any other editing action beyond the
control of GO Factory, especially those that create undo history items. The reason is described
in the following subsection.

7.5.3 Usage of Undo Items

To keep track of the actions performed in each GO Factory state, each state contains a pointer
to the last undo history item which was done before the state was set as the current one. In case
of cleanup, the undo history items are undone up to the one that the particular state points to.

Selection

Delete selected

Create a segment s

Link s

Unlink s

Create an ellipse e by two foci and a point

Link e

Rehang the third anchor of e

. . .

Step 1

Step 2

Step 3

Picture 12: States with pointers to previous undo history items.

This is the reason why the GO Factory needs to have several undo history items enabled and
why extremely low undo history limits cause strange behaviour – the GO Factory cannot keep
track of actions performed and if you cancel the whole creation, it undoes only the existing undo
items, which may not be all items used. Also, when the GO Factory is creating an object, no
other editing actions are permitted; especially the actions that create their own undo history
items, or undo and redo actions. The reason for that is obvious now.
It is also possible that some GO Factory states have no action functions or generate no undo
history items. In that case several states may point to the same undo history item, which does
not cause any problems.
When an object creation ends successfully, all new undo items are merged into one.

70 The VRR Programmer’s Manual

7.5.4 Snap

The GO Factory has four snap modes: snap to hangers, grid, lines and intersections, and a flag
which determines whether to create geometric dependencies or just modify the click position
(irrelevant for snap to grid). The snap modes are independent on one another and can be
combined or switched on and off arbitrarily (even during a GO Factory operation).
When several snap modes are switched on, the closest suitable snap position is chosen. If, for
example, snap to grid and to lines are switched on, then a point which is either on a line or a
grid point is chosen. Or, if there is no such near object within the snap tolerance, the clicked
position is kept unchanged and a mouse-click is created. The grid has the lowest priority of all
(if there are several objects with equal distance).
The snap tolerance is stored in each View window and recomputed according to the current
zoom. The top-level View window sets its tolerance into the global factory.snap_tolerance.
The bitmask of snap modes is stored in factory.snap_set.
The snap functions are:

void snap_point(struct geom_point * pos, struct dist_pass_result * dpr,

struct geom_transform2 * grid, struct obj_tlo * tlo,

real maxdist);

void snap_to_go(struct geom_point * pos, struct dist_pass_result * dpr,

struct obj_tlo * tlo, real maxdist);

void snap_to_anchor(struct geom_point * pos, struct dist_pass_result * dpr,

struct obj_tlo * tlo, real maxdist);

The snap_point function snaps the pos point according to the current snap settings and updates
the value of pos. If the dpr pointer is not NULL, it copies the dist pass result into it. The distance
pass algorithm is described in [Center pass algorithm], page 22.
The grid is a transformation matrix determining the grid points. The nearest grid point is
computed in this way:
• Transform the point using the inverted grid matrix
• Round the transformed coordinates to integers
• Transform the point back using the original grid matrix

The snap_to_go function seeks a nearby GO regardless to the current snap settings. This is used
for selection purposes, for example. snap_to_anchor seeks a nearby anchor – again, regardless
to the current snap settings.

7.6 Property Editor Widgets

Files: ‘gui/properties.h’, ‘gui/properties.c’, ‘gui/units.c’
In many VRR windows, a property value needs to be displayed, edited, and updated in reaction
to kernel property hooks. To do this, the windows use the property editor widgets. All property
editor widgets are generated using the same code, which assures that all editor widgets for the
same property type and subtype look the same and behave in the same way.
There is a data structure containing everything needed for a property editor widget:

struct prop_item

{

struct o * o;

string key;

uns type, subtype;

GtkWidget * value_edit;

GtkWidget * unit_edit;

uns flags;

struct window * pw;

};

Chapter 7: GUI 71

The o pointer represents the object to which the property belongs. key is the property unique
identifier, type and subtype store the current property type and subtype (which might change).
The two GtkWidget objects, value_edit and unit_edit, are the editor widgets of the property
value and of the property unit. The unit editor does not have to be present; in that case the
pointer is NULL. The flags bitmask is used only in the Property Window for property selection.
pw points to a parent window, which is either NULL or the parent Property Window.
To create a property editor widget, you need to allocate a prop_item structure, fill it with the
o, key, type and subtype values and call these functions:

void prop_value_edit_create(struct prop_item * pi);

void prop_unit_edit_create(struct prop_item * pi);

void prop_sync(struct prop_item * pi);

(where prop_sync updates the editor value with the current property value. This function
should be called after each change of the property value announced by kernel hooks).
Or do it all in a more convenient way using

void prop_item_init(struct prop_item * pi, struct o * o, string key);

Then the created widgets can be packed into the window where needed.

7.6.1 Property Structure Definitions

Each property subtype has its own requirements on the editor. These requirements are stored
in a data structure in the file ‘gui/properties.c’. The editor for a subtype is described by the
following structure:

struct pst_data

{

uns widget_type;

char * description;

union

{

struct { gdouble lower, upper, step, page; } spin;

struct { uns max; string * strings; } combo;

struct { uns dummy; } nothing;

struct {

void (*create_edit_func)(struct prop_item * pi);

void (*update_edit_func)(struct prop_item * pi,

struct prop * prop);

} func;

} data;

};

The widget type can be one of these:
• PWT_BUG – zero. This is an erroneous value. Its purpose is to prevent uninitialized subtype

structures after kernel changes.
• PWT_SPIN_UNS – a spin button for unsigned integers. The spin structure then specifies the

spin button settings.
• PWT_SPIN_REAL – the same as PWT_SPIN_UNS but for reals.
• PWT_COMBO – a combo box. The combo structure specifies the maximum value and the string

names of the possible values from zero up to maximum minus one.
• PWT_CHECKBOX – a checkbox for boolean values. No additional settings are needed.
• PWT_ENTRY – a text entry for string properties.
• PWT_FUNC – a special property widget with its own creating and updating functions. This

is used for example for color buttons, filename and large text editors.

The description is used when creating a new property and specifying its subtype. Then only
some property subtypes are shown (we believe that, for example, the PTU_CAP_STYLE subtype
for line caps is not very useful for user-defined properties) and those are subtypes with non-NULL
description. The description is shown in the subtype list.

72 The VRR Programmer’s Manual

7.6.2 Unit Lists

File: ‘gui/units.c’
The unit editor widgets are combo boxes containing the list of units for the particular property
quantity. These lists are stored in GtkListStore objects and maintained using the kernel unit
hooks. The same list objects are used in the Unit Manager (see Section 7.2.7 [The Unit Manager],
page 60) to make all editing changes appear in all lists at once. If the user adds, deletes, or
changes a unit, then the GtkListStore itself emits signals for all widgets that display its contents;
we do not have to do anything more.

7.6.3 Hook Handling and Transactions

Every window containing some property editor widgets has to process the kernel property hooks
and call the prop_sync function to update the editor value. This lowers the memory usage –
one hook is set for all property editor widgets in a window. The editor widget itself handles
its value changes and modifies the kernel property values accordingly. The editor value for real
numbers is multiplied by the unit multiplier.
The value in the editor is always synchronized to show the current kernel values (multiplied by
unit multipliers). The kernel values do not have to be equal to values that the user has set; for
example, if he tries to change the start point coordinates of a geometrically dependent curve,
the kernel values remain unchanged and the editor returns to the kernel values.
Not every editor value change is written to kernel – first, the kernel value is compared with
the one in the editor and if they differ a little, the values are considered equal (up to rounding
changes) and the kernel value remains unchanged. This, too, prevents cycling such as this:
• the user changes the value
• the value is read from the widget editor and written to kernel
• a kernel hook is called to handle property change
• the widget editor is updated by the kernel value
• the widget editor value is rounded (to a certain number of decimal places), which invokes a

GTK signal later as if the user had changed the value
• ...

This does not in fact cause an infinite cycle, because the property value is locked in kernel during
a property change hook call and any attempt to change the value again causes an error. So, the
problem must be detected anyway; we do it by comparing the values.
The editor widgets usually use the following value-change callback:

void prop_value_changed(GtkWidget * w UNUSED, struct prop_item * pi);

which extracts the value from the widget according to the property type and subtype, compares
the old and new values and changes the kernel value if needed. The widget values are updated
by

void prop_sync(struct prop_item * pi);

void prop_sync_prop(struct prop_item * pi, struct prop * prop);

(the former one finds the kernel property value according to the property key identifier stored
in pi and calls the latter).

7.6.4 Property Recycler

Files: ‘gui/properties.h’, ‘gui/properties.c’
When the property values are set using the TRANS_PROP_CHANGE macro, the values of some
properties (those that have the PTF_RECYCLABLE flag set) are stored in a special place called the
property store. The property store is a GO – a top-level group of a tlo linked in the zombie, not
in the universe, and a reference is kept for it to prevent its deletion.
To manipulate with property stores, VRR provides the following functions and macros:

Chapter 7: GUI 73

/* the definition */

PROP_STORE_DEFINE(_id)

PROP_STORE_NEW(_id)

PROP_STORE_DESTROY(_id)

/* the actual object which stores the properties */

PROP_STORE_O(_id)

/* the transaction tlo for recycler property changes */

PROP_STORE_TLO(_id)

PROP_STORE_GET(_id, _name, _type, _union_member_name, _default)

void prop_store_set(PROP_STORE_DEFINE(ps), const char * name,

uns type, prop_value pv);

It has two property stores: ps_global and ps_recycler. The recycler stores the properties set
by the user in some editor widgets, whereas the purpose of the global store is to store various
settings of some dialogs which are not saved anywhere else. The ps_recycler has its own
additional functions:

void gui_prop_recycler_set(string key, uns type,

uns subtype, uns unit, prop_value val);

void gui_prop_recycle(struct o * o);

The gui_prop_recycler_set function sets the given property to the recycler. If it already
contains a property of the same key, type and subtype, then the value is changed; if the key is
the same but the type or subtype does not match, the old property is deleted and a new one is
created.

The gui_prop_recycle function goes through all the object’s properties and seeks matching
properties in the recycler (with the same key, type and subtype). The values of all matching
properties are copied into the object. This function is used by the GO Factory when creating
new objects.

7.7 Transformation Tools and Mouse Event Processing

Files: ‘gui/main.h’, ‘gui/moving.c’, ‘gui/view.c’

VRR has several features which react on mouse cursor movement and cause instant recompu-
tations: the transformation tool, the GO Factory moving hanger on which created objects can
be hung, Santiago’s transformation tool, and the Fifi. The needed computations may be some-
what lengthy and sometimes, when a large complex image with many dependencies has to be
recomputed, not all mouse motion events can be processed.

The computations are performed in idle time; if there is not enough time to process all events,
the excess events are ignored. However, the mouse button release event is always processed.

7.7.1 Step-by-step Transformations

The transformation tools transform the selected objects continuously, bit by bit. Computing and
merging so many transformation matrices could cause accumulation of numeric errors, especially
when close to singularities. To avoid such side effects, the kernel functions apply the transfor-
mation matrices always to the original untransformed objects and GUI must supply it with such
matrices. The transformations are performed using the tsort_presorted_transform_safe
function.

74 The VRR Programmer’s Manual

7.7.2 The Experimental Fifi

The “Fifi” is a secondary cursor whose purpose is to indicate the current snap position. To
update the snap position, all the possible snap objects are searched after each mouse motion
event – we have done no optimizations for this so far. The computations are very slow when
snap to intersections is set on, because all the intersections are computed each time the mouse
cursor moves.
We plan to improve Fifi in future releases.

7.8 Special GTK Objects and Widgets Used

7.8.1 The GtkTreeModel Interface for Internal Structures

Files: ‘gui/univbrowser.c’, ‘gui/undohistory.c’
To provide an interface between the VRR kernel and the GTK viewing widgets, we implement the
GtkTreeModel interface for several internal structures: the main object structure of universe,
and the undo history. The implementations are the “VrrKernelStore” and “VrrUndoStore”
objects derived from the GObject class and are used in GtkTreeView widgets. They are used
in the Universe Browser window (Section 7.2.2 [The Universe Browser], page 59) and the Undo
History window (Section 7.2.6 [The Undo History Window], page 60).
These objects implement only those features needed for viewing the structure contents, they do
not enable changing them directly. When any kernel data change is announced by a hook, the
interface emits the appropriate signals to inform the widgets about the change.

7.8.2 Rulers

Files: ‘gui/ruler.h’, ‘gui/ruler.c’, ‘gui/vertruler.c’, ‘gui/horizruler.c’
VRR uses special rulers created to meet all our requirements. In contrast to GTK rulers, our
rulers can work with any resolution. According to the zoom, they choose a suitable decimal
place as the root decimal place. This value designates proper numbers to be displayed on the
rule. It can work with both small and large numbers.
The internal ruler implementation uses Pango drawing functions to display text and draws lines
and marks defining the current cursor position.
The rulers support changing the lower and upper limit, moving the lower limit, changing the
zoom and resolution and changing the current cursor position.

7.8.3 Color Selection Dialog

Files: ‘gui/selectcolor.h’, ‘gui/selectcolor.c’
We have implemented our own Color Selection dialog. It supports the RGB, HSV, and CMYK
color models and renders the resulting colors independently on the VRR image renderer – it is
and independent widget which can be reused in another program without major code changes.

Chapter 8: VCL 75

8 VCL

8.1 VCL Overview

8.1.1 The purpose of VCL

The VRR Canvas Library (VCL) is an implementation of a canvas widget with support for all
features needed in VRR. It provides this services:
• Widget-like manipulation with drawing primitives (lines, curves, ...)
• Automatic redrawing of invalid regions (after expose-events or some changes in the canvas)
• Interface for different drawing back-ends (supports GDK background and Cairo background)

The library is an almost independent part of the project and uses only VRRLIB definitions.

8.1.2 VCL general usage

The library must be initialised by calling the vcl_init() function. After that, the programmer
can create a new VCL canvas with the vcl_canvas_new() function, set its options with vcl_
canvas_setup() and set the root VCL widget of that canvas with vcl_canvas_set_root().
After that, the programmer can take (from canvas -> gtk -> widget) a GTK DrawingArea
widget containing VCL canvas and use it in a GTK application. Now you can insert, remove,
or alter any children VCL widgets (in the root VCL widget) and everything is redrawn auto-
matically. The library is not limited to one canvas, there may be several canvases at the same
time.
The programmer should include exactly one of the ‘vcl.h’ (for common usage) and
‘vcl_internal.h’ (common usage and additional access to hidden internal function) headers.
VCL uses its own object system based on the interfaces and implementations paradigm. Interface
oriented functions are dispatched in a way based on the first argument’s class. Each class can
implement many interfaces. The object system has some introspection abilities – an object can
be asked whether it supports a specific interface, and so on. There is kind of interface hierarchy:
if a class A implements interface B, then it has to implement an ancestor interface C as well.

8.1.3 Transformations

VCL widgets (called nodes here) create a tree-like hierarchy rooted in the canvas. On each level
of tree, there is a transformation matrix from the current coordinate system to pixel coordinate
system. So each node has its own coordinate system which is used to store its position and
other coordinates. Transformation is defined relatively to the parent’s coordinate system, so by
changing of coordinate system of a non-leaf node all descendants of that node are altered as
well.

8.1.4 Interface sightseeing tour

All VCL objects support the object interface, but this interface specifies only a destroy method.
The most important interface is the node interface. All VCL nodes have to implement it. Every
leaf node should implement either the shape interface or the mask interface (that depends on
the way it describes its shape).
Every non-leaf (container) node should implement the container interface, and either the
composite interface or the enclosure interface (that depends on the supported number of
children – enclosure has exactly one child, composite has any number of children). Composite
nodes often support the placement interface - it is used to add and remove children to a com-
posite node, but there are composite nodes without support of this interface – they have another
way to get children nodes. The node coordinate changing system supports the transformation
interface. And the last interface – the painter interface – encapsulates drawing backends.

76 The VRR Programmer’s Manual

8.1.5 Propagation

There are two basic processes which happen in the VCL node tree – redrawing of regions (down-
propagating, running from the root to leaves) and the propagation of a change (up-propagating,
running from a leaf to the root). The first process is initiated in the canvas (by a GTK expose
event) and managed by the current painter. There is a context structure which is internally
used by painters and which can take complete control of the drawing process. Canvas calls
the painter’s methods and the painter walks through the tree using tree-examining methods of
containers, and draws the appropriate nodes. The painter ignores uninteresting branches of the
node tree. Containers are responsible for storing information about their children (they usually
store the aggregate bounding box of all children) needed to cooperate with the painter so as
to avoid walking through uninteresting branches. These data are updated during the second
process – propagation of a change.

8.1.6 VCL Properties

A common leaf node represents just an area and its border. Its visual appearance is defined
by properties. There is a special node for setting properties – the non-leaf property node. A
property set in that node applies to all its descendants until set to another value by another
property node.
A property is a pair (key, value), where key is an integer constant and value is a byte sequence.
The list of defined property constants and byte sequence interpretations is as follows:

VCL_PROP_FILL_COLOR
u32 – packed RGBA color data, used for area filling

VCL_PROP_STROKE_COLOR
u32 – packed RGBA color data, used for stroke border

VCL_PROP_STROKE_WIDTH
double – the width of a border in local coords

VCL_PROP_STROKE_CAP_STYLE
u8 constant – cap style

VCL_PROP_STROKE_JOIN_STYLE
u8 constant – join style

Values of cap and join styles are these (the meaning of cap style and join style is traditional, so
we will not explain it):
• VCL_CAP_BUTT

• VCL_CAP_ROUND

• VCL_CAP_PROJECTING

• VCL_JOIN_MITER

• VCL_JOIN_ROUND

• VCL_JOIN_BEVEL

8.1.7 Alive and dead objects

Common VCL objects are alive objects – there are allocated dynamically on the heap and they
can be used in all ways. Alive objects are created by functions that have the _new suffix. Apart
from alive objects, there are dead objects. They are allocated on the stack (using functions with
the _init suffix) and they can be used only under special circumstances (explicitly specified in
the documentation). In spite of the fact that a dead object supports a certain interface, there
are often misimplemented non-needed methods of that interface (methods that are not needed
in some specific ways of treatment allowed for dead objects).

Chapter 8: VCL 77

8.1.8 Naming, programming and documentation conventions

Function names are composed of lower-case letters with underscore used as word separator.
Function and method names are always prefixed with vcl_, then the class name (in case of a
class-specific function) or if_ and the interface name (in case of interface method).

Pointers to unspecific VCL objects are of type void *. Common classes have functions with the
_new suffix for creating objects of that class, with the _p suffix for predicates that test whether
the argument is an object of that class, and with the _main suffix for internal functions used
during initialisation of the library to initialise the particular class. Common interfaces have
suffices _main and _p with a similar meaning.

In the next section, the functions are split into three groups – public, private, and internal. Public
functions are functions which are supposed to be used by applications. Private functions are
functions which are supposed to be used internally, but are not hidden and may be sometimes
used by applications. Internal functions are functions similar to private, but they are only
accessible in the ‘vcl_internal.h’ header file.

8.2 Interface reference

8.2.1 Interface overview

composite
Interface for container nodes with more children. It contains functions for enumer-
ation of children needed for down-propagation.

container
Interface for non-leaf nodes. It contains callbacks for up-propagation.

enclosure
Interface for container nodes with exactly one child. It contains functions for setting
and getting children.

mask Interface for leaf nodes which export their appearance as a bitmap. It contains
functions for the export of appearance.

node Interface for every node. It contains private functions for connecting nodes to the
node tree and helper functions for down-propagation.

object Interface for every VCL object. It contains just functions for object destroying.

painter Interface for painters – VCL backends. It contains functions needed for the drawing
of nodes.

placement
Interface for composite nodes with simple children replacement. It contains func-
tions for inserting and removing children nodes.

shape Interface for leaf nodes which export their appearance as (a set of) polygons. It
contains a function for the export of appearance.

transformation
Interface for non-leaf nodes which change the transformation matrix for their chil-
dren. It contains functions for manipulation with transformation matrices.

8.2.2 Composite interface

The composite interface is an interface for non-leaf nodes with more children. It does not have
any interesting public methods.

78 The VRR Programmer’s Manual

Every object implementing the composite interface must also implement the object interface,
the node interface and the container interface. There is one exception – a composite object
which has only dead children does not have to support the container interface.
Tree examining methods

There are four private methods needed to implement the down-propagation. They have self-
descriptive names. They are based on callbacks – the caller calls vcl_composite_get_children,
and a composite object answers with the execution of a callback for each child. The basic order is
from front to back (the first answer gives the top child, the last answer is gives the bottom child),
the _backwards method variants use the reversed order. Basic variants return all children, _in_
bbox method variants are allowed (but not required) to ignore some children situated outside of
the *wanted_bbox rectangle (in the children coordinate system).
This is the only place where using dead objects is allowed – a composite node can create dead
objects just before the callback answer and free it (on the stack) just after that.

void vcl_composite_get_children (void * obj, void (* cb)(void *, void *),

void * cb_data)

void vcl_composite_get_children_backwards (void * obj,

void (* cb)(void *, void *),

void * cb_data)

void vcl_composite_get_children_in_bbox (void * obj,

const struct geom_rectangle * wanted_bbox,

void (* cb)(void *, void *), void * cb_data)

void vcl_composite_get_children_in_bbox_backwards (void * obj,

const struct geom_rectangle * wanted_bbox,

void (* cb)(void *, void *), void * cb_data)

8.2.3 Container interface

The container interface is an interface for non-leaf nodes. It does not have any interesting public
methods.
Every object implementing the container interface must also implement the object interface and
the node interface and one of the composite and enclosure interfaces. The canvas class is an
exception for this rule. No object implementing the container interface is allowed to implement
any of the mask or shape interfaces.
Change propagation methods

There are two internal methods needed to implement the up-propagation of a change. These
methods inform (in the callback way) the container about changes in the child (given in the
child arg). The _altered variant describes a bounding box preserving change, the where arg
gives the bounding box of the changed part of the child. The _changed variant describes a
major change, where old_bbox is the old bounding box of the child and new_bbox is the new
bounding box of the child. All bounding boxes used here are in the children coordinate system.
Common implementation of this methods is to update bounding boxes and call same method of
the parent node.

void vcl_container_child_altered (void * obj, void * child,

const struct geom_rectangle *where)

void vcl_container_child_changed (void * obj, void * child,

const struct geom_rectangle *old_bbox,

const struct geom_rectangle *new_bbox)

8.2.4 Enclosure interface

The enclosure interface is an interface for non-leaf nodes with exactly one child. It has some
child-manipulating public methods.

Chapter 8: VCL 79

Every object implementing the enclosure interface must also implement the object interface, the
node interface and the container interface.
Child manipulating methods

Here we give the public methods with self-decriptive names for child manipulation. By using
the _set_child method for an enclosure which already has a child, the old child is released (so
it becomes a parent-free node) but not destroyed. It is not allowed to use NULL argument as
child. Although newly created enclosures are usually childless, after the insertion of a child
there is no way for the enclosure to become childless again.

void * vcl_enclosure_get_child (void * obj)

void * vcl_enclosure_set_child (void * obj, void * child)

8.2.5 Mask interface

The mask interface is an interface for leaf nodes which export their appearance as a bitmap. It
does not have any interesting public methods.
Every object implementing the mask interface must also implement the object interface and the
node interface. No object implementing the mask interface is allowed to implement any of the
container or shape interfaces.
Render method

void vcl_mask_render (void * obj, const struct geom_transform *t,

const struct vcl_rectangle *bbox,

const struct geom_rectangle *bbox_local, u8** buff,

uns * buff_len, struct vcl_rectangle *retbox)

This method is requested for rendering the appearance of obj to a bitmap. The meaning of the
bitmap is 1 for an occupied pixel and 0 for an unoccupied pixel. So there is only information
about occupied area, not about color and so on. The t argument is the required transformation
from the obj’s coordinate system to the pixel coordinate system. Arguments bbox and bbox_
local are bounding boxes of the caller’s area of interest – anything out of one of them is
not required to be rendered correctly. bbox is in pixel coordinates, bbox_local is in obj’s
coordinates. Arguments buff and buff_len are for bitmap buffer – if the buffer is small (or
NULL), then the callee is responsible for reallocating it using xmalloc or xrealloc and update
the value of *buff_len, which is the buffer size in bytes. The callee must fill *retbox to the
(pixel) coordinates of the returned bitmap.

8.2.6 Node interface

This interface is responsible for binding objects to the VCL node tree. It contains private
methods needed to connect individual objects to the tree.
Every object implementing the node interface must also implement the object interface and one
of the container, mask, or shape interfaces.
Every node connected to the tree (the root node of the canvas or a node with a parent) is respon-
sible for calling change propagation methods of its parent to participate in change propagation.
Tree binding methods

These four private methods need to be implemented for the node to be able to be connected to
the tree. The last one (_get_parent) could be considered public. The node is required to store
a pointer to its parent and some key value identifying it. _set functions should only be called
by a container having or acquiring a node as its child. The creation of parent-child connection
is done by calling appropriate public methods of the parent; and from the code of that method
the _set_parent method with new the parent pointer is called on the child.

vcl_node_set_data (void *obj, int x)

vcl_node_get_data (void *obj)

80 The VRR Programmer’s Manual

vcl_node_set_parent (void *obj, void * parent)

vcl_node_get_parent (void *obj)

Transformation functions

There are four public functions for getting transformations from the obj’s children coordinate
space to the pixel coordinate space (primary functions) and from the pixel coordinate space to
the obj’s children coordinate space (inverted functions). These functions are not methods of
the node interface (so a class implementing the node interface does not implement these func-
tions) but can be called on any nodes (as the first argument). _apply_point applies the given
transformation to one struct geom_point, _apply_matrix applies the given transformation to
one struct geom_transform. For transforming more points it may be faster to get one struct
geom_transform (by supplying the _apply_matrix function with identity) and then transform
every point with it.
The return values of this functions are error values (where zero means OK) with the same
meaning as standard error values of GEOMLIB.

int vcl_primary_apply_matrix (void * obj, struct geom_transform *dst)

int vcl_inverted_apply_matrix (void * obj, struct geom_transform *dst)

int vcl_primary_apply_point (void * obj, struct geom_point *dst)

int vcl_inverted_apply_point (void * obj, struct geom_point *dst)

8.2.7 Object interface

The object interface is an inteface common for all objects. It has just one function – void
vcl_object_destroy (void * obj) . Nodes to be destroyed must be parent-free, but may have
children – in that case the whole subtree is destroyed (every implementation of this interface
should call _destroy in a recursive way).

8.2.8 Painter interface

An interface for painters – VCL backends. It does not have any interesting public methods.
Every object implementing the painter interface must also implement the object interface.
A painter should walk through the VCL node tree and draw the appropriate nodes. Common
walking logic can be handled (in implementation of the painter interface) by using struct
context.
Painting methods

These painting methods share a common structure of arguments – node is the current drawing
node, bbox is the bbox to be redrawn in pixel coordinates, bbox_local is the bbox to be
redrawn in the node’s coordinate system (in case of _draw_node or _draw_leaf), or the node’s
children coordinate system (in case of _draw_composite – to match the coordinate system of
vcl_composite_get_children).
A painter is supposed to be used as a sequence of calls of _draw_begin, _draw_node on the
root node and _draw_end. The _draw_node function is supposed to draw the node (and, in
case of composite, all its descendants, too). The remaining two functions are used in a case
of implementing _draw_node using struct context and its recursive decomposing. In that
case, in _draw_node, a dispatch and enclosure handling are done, for leaf handling _draw_leaf
is called and for composite handling _draw_composite. _draw_leaf really draws a leaf and
_draw_composite calls _draw_node on its children.

vcl_painter_draw_begin (void * obj, const struct vcl_rectangle *bbox)

vcl_painter_draw_end (void * obj)

Chapter 8: VCL 81

vcl_painter_draw_node (void * obj, void * node,

const struct vcl_rectangle *bbox,

const struct geom_rectangle *bbox_local)

vcl_painter_draw_leaf (void * obj, void * node, const struct vcl_rectangle *bbox,

const struct geom_rectangle *bbox_local)

vcl_painter_draw_composite (void * obj, void * node,

const struct vcl_rectangle *bbox,

const struct geom_rectangle *bbox_local)

8.2.9 Placement interface

The placement interface is an interface for non-leaf nodes with simple children inserting and
removing. It has public methods for children manipulating.
Every object implementing the placement interface must also implement the object interface,
the node interface, the container interface and the composite interface.
Children manipulating methods

This functions should be clear, so just one remark: a removed child is released (so it becomes a
parent-free node) but not destroyed.

vcl_placement_add_child_on_top (void * obj, void * child)

vcl_placement_remove_child (void * obj, void * child)

8.2.10 Shape interface

The shape interface is an interface for leaf nodes which export their appearance as (a set of)
polygons. It does not have any interesting public methods.
Every object implementing the shape interface must also implement the object interface and the
node interface. No object implementing the shape interface is allowed to implement any of the
container or mask interfaces.
Polygonize method

void * vcl_shape_polygonize (void * obj, void * it, double delta,

const struct geom_transform *t,

const struct geom_rectangle *bbox,

u8 ** buff, uns * buff_len, uns *closed,

uns *points, uns hints)

This method is requested for expressing a part of the area occupied by obj by one polygon
(or polyline). This function is supposed to be called in an iterative way – in every call one
polygon/polyline is returned. In first call, the it argument should be NULL, and next calls
should have it set to the return value of the previous call. If the return value is NULL, then
there should be no other calls. All iterations must be done (there is no way to escape during
the cycle).
The delta argument means the precision of the approximation. The t argument is the required
transformation from the obj’s coordinate system to pixel coordinate system (the primary trans-
formation matrix). The bbox argument is the bounding box of caller’s area of interest – anything
out of it is not required to be approximated within the given precision, but must have a correct
connection to the next point inside the bounding box. Any polygons/polylines which are entirely
outside bbox can be skipped. bbox is in obj’s coordinates.
The buff and buff_len arguments are for point buffer – if the buffer is small (or NULL), then
the callee is responsible for reallocating it using xmalloc or xrealloc and update the value in
*buff_len, which is the buffer size in bytes. The caller can give some hints using the hints
argument, but the callee can ignore them. The hints are the following flags: VCL_SHAPE_CLOSED_
ONLY – the callee can skip polylines, VCL_SHAPE_OPEN_ONLY – the callee can skip polygons.

82 The VRR Programmer’s Manual

Polygons/polylines are returned using an array of struct geom_rectangle stored in the buffer,
the number of points is returned in *points, *closed indicates whether the returned object is
a polygon (=1) or a polyline (=0).

8.2.11 Transformation interface

The transformation interface is an interface for container nodes which change the coordinate
system of their children. It has several public methods.

Every node in the VCL node tree has its own coordinate space. A node implementing the
transformation interface has two different spaces – the standard obj’s coordinate space and the
children coordinate space (which is equivalent to the coordinate space of its children). Between
these two spaces there are transformations given by transformation matrices. The primary
matrix is from children space to obj’s space and the inverted matrix is from obj’s space to
children space.

Every object implementing the placement interface must also implement the object interface,
the node interface and the container interface.

Transformation methods

The _apply_point methods just convert struct geom_point from one space to another. The
_matrix methods are more complicated. They take a transformation as an argument and
merge it with the primary or inverted transformation. Suppose that O represents the obj’s
space, C represents the children’s space, X represents another space and A → B represents the
transformation matrix from A to B. So C → O is the primary matrix and O → C is the inverted
matrix. The appropriate _matrix methods can be described in the following way:

_primary_apply_matrix
source = X → C, result = X → O

_inverted_apply_matrix
source = C → X, result = O → X

_primary_preply_matrix
source = O → X, result = C → X

_inverted_preply_matrix
source = X → O, result = X → C

The return values of these functions are error values (0 = OK) with the same meaning as the
standard error values of GEOMLIB.

int vcl_transformation_primary_apply_matrix (void * obj,

const struct geom_transform *src, struct geom_transform *dst)

int vcl_transformation_inverted_apply_matrix (void * obj,

const struct geom_transform *src, struct geom_transform *dst)

int vcl_transformation_primary_preply_matrix (void * obj,

const struct geom_transform *src, struct geom_transform *dst)

int vcl_transformation_inverted_preply_matrix (void * obj,

const struct geom_transform *src, struct geom_transform *dst)

int vcl_transformation_primary_apply_point (void * obj,

const struct geom_point *src, struct geom_point *dst)

int vcl_transformation_inverted_apply_point (void * obj,

const struct geom_point *src, struct geom_point *dst)

Chapter 8: VCL 83

8.3 Class reference

8.3.1 Class overview

Leaf nodes:

char Dead mask node used by TEX-layout to draw chars.

grid Shape node – an equidistant rectangular infinite grid.

path Shape node – an open or closed path (composed of Bézier curves and segments).

rect Shape node – a rectangle parallel with the axes, it has a dead variant.

segment Shape node – one line segment.

string Dead mask node used by text-layout to draw strings.

Container nodes:

affinity Enclosure representing an affine transformation.

group Universal grouping node (composite, placement).

lazy-expanding-area
Composite node using callbacks to implement its contents.

offset Dead enclosure node used by TEX-layout to position chars.

property Enclosure for changing style properties (like color) for its descendants.

tex-layout
Composing node for drawing TEX expansion (or any char-positioned text).

text-layout
Composing node for drawing text.

The rest of the objects:

canvas Canvas object.

painter-cairo
Cairo library backend – a compile time option.

painter-plainx
GDK backend – default.

8.3.2 Char class

Dead node used by TEX-layout to draw chars.
Supports the node interface and the mask interface.

void vcl_char_init (struct vcl_char *obj, uns code, uns charmap,

int font_id, real font_size,

struct geom_rectangle bbox)

The code, charmap and font_id arguments are fontlib values specifying a glyph. font_size is
the size of the font and bbox is the bounding box of the glyph, both in local coordinates.

8.3.3 Grid class

An equidistant rectangular infinite grid. Horizontal lines are parallel with the x-axis and vertical
with the y-axis, both with spacing 1 (all in the obj’ coordinate space). If you want a different
grid, use an affine transformation before.
It supports the object interface, the node interface and the shape interface.

vcl_grid_new (void)

Just creates a grid.

84 The VRR Programmer’s Manual

8.3.4 Path class

An open or closed path, composed of Bézier curves and segments. Uses struct geom_path as
data representation, which may be external or internal.

It supports the object interface, the node interface and the shape interface.
struct vcl_path * vcl_path_new (struct geom_path * p)

Creates a path. The p argument is a pointer to external path-representing data (which are not
freed during the destroying of the obj). If it is NULL, then the internal path-representing data
are used (accessible as the path -> embedded data item).

void vcl_path_source_changed (struct vcl_path * obj)

The user can freely modify the struct geom_path path representation, but after that he must
call vcl_path_source_changed() to update the path node.

8.3.5 Rect class

A rectangle parallel with the axes. It has a dead variant (names rect-s).

It supports the object interface, the node interface and the shape interface. (The object interface
is not supported in the dead variant.)

void vcl_rect_init (struct vcl_rect *obj, struct geom_rectangle r)

Creates the dead variant. In r, there are local coordinates of the rectangle.
struct vcl_rect * vcl_rect_new (struct geom_rectangle r)

Creates the alive (normal) variant. If r, there are local coordinates of the rectangle.

8.3.6 Segment class

One line segment.

It supports the object interface, the node interface and the shape interface.
struct vcl_segment * vcl_segment_new (struct geom_point p1,

struct geom_point p2)

Creates the path from p1 to p2, in local coordinates.

8.3.7 String class

A dead node used by text-layout to draw strings.

It supports the node interface and the mask interface.
void vcl_string_init (struct vcl_string *obj, const char *string,

uns charmap, int font_id, real font_size,

const struct geom_rectangle *bbox)

string is a string of glyph codes (in UTF-8), charmap and font_id are fontlib values specifying
the font and interpretation of glyph codes from string. font_size is the font size and bbox is
the bounding box of the string, both in local coordinates.

8.3.8 Affinity class

A node representing an affine transformation. It changes the coordinate space of its child. It
supports a set of functions for manipulation with the internal transformation.

It supports the object interface, the node interface, the container interface, the enclosure inter-
face and the transformation interface.

struct vcl_affinity * vcl_affinity_new (void)

Just creates an affinity (with an identity matrix).
struct geom_transform2 * vcl_affinity_get (struct vcl_affinity *obj)

Gets the internal transformations.

Chapter 8: VCL 85

void vcl_affinity_set (struct vcl_affinity *obj,

const struct geom_transform2 *t)

Sets the internal transformations.
void vcl_affinity_inner_merge (struct vcl_affinity *obj,

const struct geom_transform2 *t)

Merge the internal transformation with the t transformation; so the result is equivalent to adding
a new affinity with the t transformation as an obj’s child,

If the internal primary transformation is from a space B to a space C and the primary trans-
formation of t is from a space A to the space B, then the new internal primary transformation
is from the space A to the space C.

void vcl_affinity_outer_merge (struct vcl_affinity *obj,

const struct geom_transform2 *t)

Merge the internal transformation with the t transformation so that the result is equivalent to
adding a new affinity with the t transformation as the obj’s parent.

If ithe internal primary transformation is from a space A to a space B and the t primary
transformation is from the space B to a space C, then the new internal primary transformation
is from the space A to the space C.

void vcl_affinity_merge (struct vcl_affinity *obj,

const struct geom_transform2 *t)

An alias for vcl_affinity_outer_merge.

8.3.9 Group class

An universal grouping node. It enables to add and remove children freely.

It supports the object interface, the node interface, the container interface, the composite inter-
face and the placement interface.

vcl_group * vcl_group_new (void)

Just creates an empty group.

8.3.10 Lazy-expanding-area class

A composite node using callbacks to implement its contents. During the creation, each instance
gets three callbacks that are called by the LE-area to get information about its content. Potential
children (this term is used for represented children regardless of the state of their expansion, so
the potential children need not to be children of the LE-area in the VCL node tree meaning)
are represented by a meaningless void * pointer. Children are expanded (when needed) to
VCL nodes, which are cached inside the LE-area. The creator is also responsible for sending
notifications (using _notification functions) about interesting events regarding the visualised
objects.

It supports the object interface, the node interface, the container interface and the composite
interface.

Callbacks

All callback headers contain the data argument, which is user data registered together with the
callback.

void (* get_bbox_of_child_fn_t) (void * child_id,

struct vcl_le_area * questioner,

struct geom_rectangle *bbox, void * data)

The first callback is used by the LE-area to ask about the bbox of a child child_id. The callee
is required to fill the *bbox (in local coordinates).

void * (* expand_child_fn_t) (void * child_id,

struct vcl_le_area * questioner, void * data)

86 The VRR Programmer’s Manual

The second callback is used by the LE-area to expand a meaningless child ID to a VCL node.
The callee is required to return a (parent-free) VCL node representing the child_id child. The
caller (LE-area) is then responsible for destroying that node.

void (* get_children_fn_t) (struct vcl_le_area * questioner, uns backwards,

const struct geom_rectangle * bbox, void * data)

The third callback is used by the LE-area to ask about children in the bbox. The callee is
required to answer using one call vcl_le_area_answer_child_in_bbox() per one item inside
the *bbox, the callee is allowed (but not required) to ignore items outside *bbox. The items
should be answered in the order from front to back, unless backwards is true.
Functions

struct vcl_le_area * vcl_le_area_new (get_bbox_of_child_fn_t cb1,

void * cb1_data, expand_child_fn_t cb2,

void * cb2_data, get_children_fn_t cb3,

void * cb3_data)

Creates an LE-area with the appropriate callbacks.
vcl_le_area_flush (struct vcl_le_area * obj,

const struct geom_rectangle *new_bbox)

Flushes all cached children nodes and stored information and sets a new internal bounding box.
*new_bbox must encompass all new potential children of the LE-area. It can be used instead of
many child disappearance and child appearance notifications after a massive reorganisation of
represented data.

void vcl_le_area_answer_child_in_bbox (struct vcl_le_area * obj,

void * child_id)

Answers the get_children callback.
void vcl_le_area_child_altered_notification (struct vcl_le_area * obj,

void * child_id, const struct geom_rectangle *where)

A notification about a bounding box preserving change in a potential child child_id, where
where is the bounding box of the changed part of the potential child.

void vcl_le_area_child_changed_notification (struct vcl_le_area * obj,

void * child_id, const struct geom_rectangle *old_bbox,

const struct geom_rectangle *new_bbox)

A notification about a major change of a potential child, where old_bbox is the old bounding
box of the potential child and new_bbox is the new bounding box of the potential child.

void vcl_le_area_child_transformed_notification (struct vcl_le_area * obj,

void * child_id, const struct geom_rectangle *old_bbox,

const struct geom_rectangle *new_bbox,

const struct geom_transform2 * trans)

A notification about a major change of a potential child which has the character of an affine
transformation, where old_bbox is old the bounding box of the potential child, new_bbox is the
new bounding box of the potential child, and trans is the given transformation.
For one event, there should be only one call to one of the
• vcl_le_area_child_altered_notification

• vcl_le_area_child_changed_notification

• vcl_le_area_child_transformed_notification

functions.
void vcl_le_area_child_appeared_notification (struct vcl_le_area * obj,

void * child_id)

A notification about a new potential child.
void vcl_le_area_child_disappeared_notification (struct vcl_le_area * obj,

void * child_id)

A notification about the vanishing of a potential child.

Chapter 8: VCL 87

void * vcl_le_area_child_lookup (struct vcl_le_area * obj, void * child_id)

Does a lookup in the internal cache of children representing nodes. Returns the appropriate
node of child_id if it is in the cache, NULL otherwise. The node is locked to prevent it from
being destroyed by the LE-area. The callee is not responsible for destroying the returned node.

void vcl_le_area_child_unlock (struct vcl_le_area * obj, void * child_id)

Unlocks a cache item locked by vcl_le_area_child_lookup().

8.3.11 Offset class

A dead node used by TEX-layout to position chars.
It supports the node interface, the container interface, the enclosure interface and the transfor-
mation interface.

struct vcl_offset * vcl_offset_init (struct vcl_offset * obj, real dx,

real dy, void * child)

Creates an offset (dx, dy) with child as the child.

8.3.12 Property class

A node for changing style properties (like color) for its descendants. It stores a set of proper-
ties. There is no automatic change propagation after a change of the property values, so the
programmer can change many properties and then call vcl_property_changed() to process all
changes at once.
It supports the object interface, the node interface, the container interface and the enclosure
interface.

struct vcl_property * vcl_property_new (void)

Creates a property node with an empty set of properties.
void vcl_property_set (struct vcl_property * obj, int prop_id,

void *prop_data)

Sets the property with ID prop_id to value prop_data.
int vcl_property_get_count (struct vcl_property * obj)

Returns the size of the set of properties in obj.
int vcl_property_get_nth_type (struct vcl_property * obj, int n)

Returns the ID of the n-th property.
void * vcl_property_get_nth_value (struct vcl_property * obj, int n)

Returns the value of the n-th property.
void * vcl_property_get (struct vcl_property * obj, int prop_id)

Returns the value of the property with ID prop_id.
void vcl_property_changed (struct vcl_property * obj)

Causes the change propagation (and a drawing update).
Shortcuts to set common properties

VCL_PROP_FILL_COLOR
void vcl_property_set_fill_color (void *prop, u32 color)

VCL_PROP_STROKE_COLOR
void vcl_property_set_stroke_color (void *prop, u32 color)

VCL_PROP_STROKE_WIDTH
void vcl_property_set_stroke_width (struct vcl_property * obj, double width)

VCL_PROP_STROKE_CAP_STYLE
void vcl_property_set_stroke_cap_style (void *prop, uns cap_style)

VCL_PROP_STROKE_JOIN_STYLE
void vcl_property_set_stroke_join_style (void *prop, uns join_style)

88 The VRR Programmer’s Manual

8.3.13 TEX-layout

A node for drawing a TEX expansion (or any char-positioned text). The data are stored as an
array of struct tex_glyph.
It supports the object interface, the node interface and the composite interface.

struct vcl_tex_layout * vcl_tex_layout_new (uns copy,

struct tex_glyph *glyphs, uns glyphs_cnt,

const struct geom_rectangle *bbox)

Creates a TEX-layout. The glyph array is given by glyphs and its size is glyph_cnt. If copy
is true, then the glyph array is copied, otherwise a pointer is taken (and the TEX-layout is
not responsible for freeing it during the destroying). *bbox is the bounding box of the entire
TEX-layout (in local coords).

8.3.14 Text-layout

A node for drawing text.
It supports the object interface, the node interface and the composite interface.

struct vcl_text_layout * vcl_text_layout_new (uns copy,

const char *string, int font_id,

real font_size,

const struct geom_rectangle *bbox)

Creates a text-layout. string is a string of glyph codes (in UTF-8). If copy is true, then the
string is copied, otherwise a pointer is taken (and the text-layout is not responsible for freeing
it during the destroying). font_id is a FONTLIB value specifying the font. font_size is the
font size and bbox is the bounding box of the string, both in local coordinates.

8.3.15 Canvas class

A canvas object. It hosts the root of the VCL node tree, runs painters and handles the cooper-
ation with GTK (events etc.).
It supports the object interface and the container interface.

struct vcl_canvas * vcl_canvas_new (void)

Just creates a canvas.
void vcl_canvas_setup (struct vcl_canvas *obj, int flags, real center_x,

real center_y, real unit_size)

Sets miscellaneous canvas parameters. center_x and center_y specify the relative center of
the canvas – this point is fixed when resizing the canvas and it is the implicit position of (0, 0).
Passing the (0.5, 0.5) values associates the center with the real center. unit_size is a multiplier
for units and the flags are these:

VCL_CANVAS_REAL_UNITS
the base unit is a millimeter instead of a pixel.

VCL_CANVAS_FULL_WIDTH
The GTK widget allocates full width for the bounding box of the root node instead
of a flexible size.

VCL_CANVAS_FLIP_X
Flip the X axis (instead of X increasing in left-right direction)

VCL_CANVAS_FLIP_Y
Flip the Y axis (instead of Y increasing in the up-down direction)

void vcl_canvas_set_root (struct vcl_canvas *obj, void * root)

Sets the root node. The same rules as in vcl_enclosure_set_child apply.
void * vcl_canvas_get_root (struct vcl_canvas *obj)

Returns the root node.

Chapter 8: VCL 89

8.3.16 Painter-cairo class

A Cairo library backend. It uses alpha-blending and antialiased lines. It is a compile time
option. It supports all properties.

It supports the object interface.
struct vcl_painter_cairo * vcl_painter_cairo_new (GtkWidget *wg)

Create painter-cairo on wg widget. (should be called internally from canvas object).

8.3.17 Painter-plainx class

A GDK backend. It does not support alpha-blending or antialiased lines. This is the default
painter. It supports all properties.

It supports the object interface.
struct vcl_painter_plainx * vcl_painter_plainx_new (GtkWidget *wg)

Creates a painter-plainx on the wg widget. (It should be called internally from a canvas object.)

8.4 VCL Miscellanea

8.4.1 Object system implementation

The object system is implemented in the ‘vcl/object.c’ and ‘vcl/object.h’ files. Every
interface is identified with an integer, which is also an index to the vcl_ifaces growing array
of interface descriptors (struct vcl_iface_dsc). Every virtual method (generic, not an actual
implementation) is identified with an integer from one to (method_counter - 1). Methods of
one interface are assigned consecutive integer values (items first_fn and fn_count in struct
vcl_iface_dsc).

A class is identified with vcl_vtable, which is an array (of length method_counter), in the
zero slot there is a pointer struct vcl_class_dsc, in the next slots there are pointers to im-
plementations of virtual functions. The check whether a given class supports a given interface
is implemented by a check whether the appropriate slot for first_fn of that interface is non-
empty. All interfaces must be defined before the first class definition, because otherwise different
classes would have different sizes of vtables and a check whether a new interface is supported
by the old class could cause invalid memory access.

8.4.2 vcl-rectangle

struct vcl_rectangle represents a rectangle from an included point (lx, ly) to an excluded
point (hx, hy). Of course, the associated vertical and horizontal lines are included with the first
point (and excluded with last one). This structure is usually used to specify a bitmap region.
There are some straightforward functions in ‘vcl/rectangle.h’

8.4.3 vcl-growing-array

struct vcl_growing_array is a dynamic (expanding) array with a counter of used items. There
are some straightforward functions in ‘vcl/gas.h’; the vcl_ga_ensure() function is used to
ensure that a requested slot is accessible (after the call, it is accessible).

8.4.4 vcl-context

struct vcl_context is an internal structure used in both painters. It handles a stack of active
properties and transformations, as well as the logic of tree walking during the drawing. It stores
the active properties and transformations as structure items, the shaded (old) values are stored in
a growing-array used as a stack. The manipulating functions can be found in ‘vcl/context.h’.

90 The VRR Programmer’s Manual

8.4.5 Packed colors

Packed colors for color properties can be accessed by the
• uns get_r (u32 u)

• uns get_g (u32 u)

• uns get_b (u32 u)

• uns get_a (u32 u)

functions, and created by the u32 get_color (uns r, uns g, uns b, uns a) function.

Chapter 9: FONTLIB 91

9 FONTLIB

9.1 FONTLIB overview

FONTLIB is the font rendering and manipulation library of the VRR project.

To do the most of the font manipulation and rendering, FONTLIB utilizes the FreeType library.
However, FreeType is a very low-level library, does not contain everything and unfortunately
it is quite buggy. Thus, a lot of handwork is implemented in FONTLIB, mostly in different
font format conversions and high-level font rendering interface. We give a description how the
cooperation with FreeType is implemented in Section 9.3 [FreeType library usage], page 92.

FONTLIB contains support for rendering PostScript Type1 fonts and TrueTypes, computing
text bounding boxes and converting fonts among these formats. See Section 9.4 [Supported font
formats], page 92 for the list and description of supported font formats.

The FONTLIB sources are located in the ‘font’ directory and the public header is the file
‘font/font.h’, where you can find the detailed descriptions of all functions and data structures.

9.2 FONTLIB programmers usage

All symbols defined by FONTLIB have the font_ prefix. Before the first use of FONTLIB, the
font_init function must be called. On the other hand, the cleanup is done by the font_finish
function.

FONTLIB provides a powerful font server which caches the loaded fonts. Every font loaded into
the fontserver gets a unique integer identification number, called the font ID or also the font
descriptor. A zero or negative font ID is considered invalid. A font file can be loaded via the
font_load_file function. The font server keeps track of loaded fonts and does not load twice
the same file into the memory. Caching is managed by the FreeType library. That means that
if the memory is low or there are many fonts loaded, only the recently used fonts are present in
memory. The others are “swapped” and opened on demand.

Most of the communication with rendering routines, bounding box computing and other func-
tions is done via the struct font_ctl structure, which is passed as an argument. Here you
specify the font ID, font size (measured in millimeters), transformation, etc. Do not forget that
this structure has to be properly initialized and also cleaned up by the font_ctl_init and
font_ctl_cleanup functions.

The actual rendering of one glyph and a whole string is done by the functions font_render_
glyph and font_render_string, respectively. These functions perform some computation, then
call FreeType to do the low-level glyph rendering and return the resulting bitmap.

To compute the bounding box (in millimeters) of a given glyph or string, there are the font_get_
glyph_bbox and font_get_string_bbox functions. Again, they are controlled via the struct
font_ctl structure.

The rest of the functions does not need any special comments, just look in the reference manual
or ‘font/font.h’ source. We just briefly sketch the functionality. There are routines returning
various font information (font_info, font_t1_info, . . .). Some font formats can be converted
into some other (font_pfa_to_pfb, font_tt_to_type42, font_pfb_to_pfa), see Section 9.6
[Font conversions], page 94 for details.

There is also the not yet fully implemented support for expanding fonts into the GEOMLIB
curve representation (font_char_decompose). FONTLIB also includes a logic for finding the
most similar font if the original one is not available (font_search). The FontConfig library is
utilized here.

92 The VRR Programmer’s Manual

9.3 FreeType library usage

VRR uses the version 2.1.9 of the FreeType library. The homepage of the FreeType project is
at http://www.freetype.org/ and FreeType is currently probably the best open source font
rendering library available.
However, during our very intensive usage of FreeType in VRR we encountered an enormous
amount of bugs, failures and design faults inside the FreeType library. The errors we discovered
include:
• Faults during rendering fonts at small sizes.
• Lack of documentation, low quality and errors in the present documentation.
• Bugs in the new caching subsystem design.
• Heavy interface incompatibility between two very close versions (namely 2.1.7 and 2.1.9).
• The overall unstable and development character of the library.

Therefore, we chose one particular version of the library, which seemed to be the most stable
one, and included its source together with the VRR source code. During the project compilation,
the FreeType library is compiled, too. But this is not all, FreeType cannot be simply linked to
the binaries because of the namespace conflicts with the FreeType library version used by the
GTK library.
The solution is the following: the library is compiled and during the FONTLIB initialization, it is
dynamically loaded into the running executable via the system function dlopen(). Every utilized
symbol is then searched via the dlsearch() function and given another name, prefixed by font_
. See the main FONTLIB source ‘font/font.c’ and the internal header ‘font/internal.h’ for
implementation details.
We consider our solution to be a working, but quite dirty hack and we are waiting for the
FreeType library to stabilize to remove it.

9.4 Supported font formats

FONTLIB accepts only scalable (vector) fonts. There is no obstacle in supporting also fixed-size
(bitmapped) fonts, but since VRR is a vector editor and the fonts need to be rendered in various
scales, there is no reason to support the bitmap fonts. In this section, there is a description of
supported font formats.

9.4.1 PostScript Type1 fonts

The Type1 PostScript font is probably the most widely spread font format in the UNIX world.
A Type1 font program is actually a special case of a PostScript language program. The Post-
Script interpreter renders the font intelligently, in a device-independent manner. This allows a
font developer to create one font program that can be rendered on a wide variety of devices and
at many different resolutions.
A Type1 font program consists of a clear text (ASCII) portion, and an encoded and encrypted
portion. The PostScript language commands used in a Type1 font program must conform to a
much stricter syntax than the “normal” PostScript language programs do. Type1 font programs
can include special “hints” that make their representation as exact as possible on a wide variety
of devices and pixel densities.
For complete reference, see http://vrr.ucw.cz/doc/T1Format.pdf.
A Type1 font program should be a 7-bit ASCII data stream when it is sent to a PostScript
interpreter. However, the programs are not always stored in this way on the host system. In
environments where disk space is a concern, the files are compressed according to some scheme
to reduce their size on the host system, but they need to be decompressed before they can be
understood by a PostScript interpreter.

http://www.freetype.org/
http://vrr.ucw.cz/doc/T1Format.pdf

Chapter 9: FONTLIB 93

Type1 font programs are encrypted. That is, most of the actual program file has been reduced
to an unreadable form that is decoded by the PostScript printer before it is executed. The
encrypted data is in hexadecimal form, as a stream of digits. These digits are preceded by clear-
text PostScript language code, and might have a line or two of clear-text PostScript language
at the end as well.

9.4.1.1 Type1 PFA fonts

A PFA Type1 font is just Type1 font completely encoded in 7-bit ASCII.

9.4.1.2 Type1 PFB fonts

PC Type1 fonts can be stored in a compressed binary format, called PFB. These files can be
unpacked as they are being downloaded to the PostScript interpreter. The file is conceptually
divided into segments, each of which has a small header containing a “type” field and length
information. There are three types of segments:

• TYPE 1: ASCII text. This text can be sent directly to the printer without any decompres-
sion.

• TYPE 2: This is binary data that should be converted to hexadecimal and transmitted
to the printer as a stream of ASCII hex data (new lines can be inserted anywhere in hex
streams, if necessary).

• TYPE 3: End-of-file indication. This is a flag that indicates that the end of the data
segment has been reached.

The detailed reference can be found at http://vrr.ucw.cz/doc/Download_Fonts.pdf.

9.4.2 TrueType fonts

TrueType is the binary scalable font format originally created by Apple and nowadays is the
most widely font format in the Mac and Microsoft Windows world.

A TrueType font file consists of a sequence of concatenated tables. The first of the tables is
the font directory, a special table that facilitates access to the other tables in the font. The
directory is followed by a sequence of tables containing the font data. These tables can appear
in any order. Certain tables are required for all fonts. Others are optional depending upon the
functionality expected of a particular font.

The required tables must appear in every valid TrueType font file. This is the list of the required
tables:

• cmap: character to glyph mapping

• glyf: glyph data

• head: font header

• hhea: horizontal header

• hmtx: horizontal metrics

• loca: index to location

• maxp: maximum profile

• name: naming

• post: PostScript

The complete TrueType font reference manual can be found at
http://vrr.ucw.cz/doc/TTRefMan/index.html.

http://vrr.ucw.cz/doc/Download_Fonts.pdf
http://vrr.ucw.cz/doc/TTRefMan/index.html

94 The VRR Programmer’s Manual

9.4.3 PostScript Type42 fonts

The Type42 font is a TrueType font coded in a special way and wrapped in a PostScript font
envelope. This can be used to download TrueType fonts to PostScript printers (or PostScript
compatible printers) that contain a TrueType rasterizer. This method yields better print quality
than can be achieved by converting a TrueType font to a Type1 one.
The complete Type42 font format specification is available at http://vrr.ucw.cz/doc/Type42_
Spec.pdf.

9.5 Font rendering

FONTLIB utilizes the FreeType library for the purpose of low-level rendering and bounding box
computation. When we omit the technical details of FreeType usage, the rendering is straight-
forward: a font is loaded, scaled, a transformation is applied and the glyph is rendered into a
bitmap based on the bounding box size. The same applies to the bounding box computation.
The only exception is string rendering. Here, the rendering routine has two passes. In the first
one, the exact bitmap size is computed, and in the second one all the string glyphs are actually
rendered.
Rendering routines are located in the ‘font/render.c’ source file.

9.6 Font conversions

FONTLIB provides some routines for font format conversions. This is mostly needed in the
exports (see Chapter 11 [Export], page 100). For example, in order to include a TrueType font
inside a PostScript file, it must be converted into a Type42 font. Similar rules apply to PFB
Type1 fonts.
The conversion routines are realized in the ‘font/convert.c’ source file. The converters are
also available as standalone utilities, each with its simple wrapper around the FONTLIB.

9.6.1 PFA to PFB conversion

This conversion works by encoding the source ASCII PFA format into the binary PFB format. We
perform a somewhat heuristic PFA parsing to find the three sections (see PFB file description),
and we encode the middle one (the encrypted font data) into binary representation.

9.6.2 PFB to PFA conversion

The PFB to PFA conversion is straightforward, we follow the strict PFB definition, we parse the
source data and convert the middle section (encrypted font data) into ASCII representation.

9.6.3 TrueType to Type42 conversion

The TrueType to Type42 conversion is tricky. The FreeType support is almost useless here and
we have to implement everything manually. It is a work of black magic and intensive hacking.
First, the Type42 header is constructed according to information provided by FreeType. We
then load the important TrueType font tables by manually parsing the TrueType file. Then we
construct a modified TrueType file copy, changed for the purpose of Type42 enveloping. This
includes building a new TrueType directory and encoding everything in ASCII.

9.7 Other FONTLIB functionality

FONTLIB ability to search for the most suitable available font is a straightforward application
of the FontConfig library.
The experimental font expansion into GEOMLIB curves is realized using FreeType. FreeType
includes routines for walking through the decoded font curves and we simply read these curves
and convert them into GEOMLIB objects.

http://vrr.ucw.cz/doc/Type42_Spec.pdf
http://vrr.ucw.cz/doc/Type42_Spec.pdf

Chapter 9: FONTLIB 95

The informational functions simply call the appropriate FreeType function to get information
about the font or just copy them from the right FreeType data structures.

96 The VRR Programmer’s Manual

10 Plugins

VRR has a support for plugins. A plugin is a standalone binary file that contains various functions
which are distributed separately from VRR.
The plugin interface is defined in ‘kernel/plugin.h’, the implementation is in
‘kernel/plugin.c’.

10.1 Plugin mechanism implementation

Each plugin is actually an ELF shared library file.
Shared libraries are libraries that are loaded by programs when they start. When a shared library
is installed properly, all programs that start afterwards automatically use the new shared library.
It is actually much more flexible and sophisticated than this, because the approach used by Linux
permits you to:
• update libraries and still support programs that want to use older, non-backward-compatible

versions of those libraries;
• override specific libraries or even specific functions in a library when executing a particular

program.
• do all this while programs are running using the existing libraries.

For more informations about shared libraries, see for example
http://www.linux.org/docs/ldp/howto/Program-Library-HOWTO/.
However, shared libraries can be loaded not only during program startup, but also manually, by
the dlopen() system function. The function loads the library file and returns a handler (or just
returns a handler if the library is already loaded). The library symbols can then be accessed
via the dlsym function. Thus, the plugin can export functions and variables to the program.
Sometimes, the plugin cannot be also unloaded, because it may change the VRR behavior in an
irreversible way.
The VRR plugin interface maintains the list of currently loaded plugins, and for each loaded
plugin the list of exported functions. The loaded plugin list is maintained as a linked list
of struct plugin_rec structures, similarly the function lists. The functions are exported by
the plugin itself during initialization. See Section 10.2 [Rules for writing plugins], page 96 for
programmers usage informations.
The arguments of a plugin function are passed via the union plugin_arg union. The return
type of the function must be either void or union plugin_arg. Only a subset of C and VRR
data types is allowed in function prototypes, see enum plugin_prototypes for the allowed list.
The function arguments are passed as an array of union plugin_arg unions. The function
prototype is described to the VRR plugin interface by arguments of the registration plugin_
function_register function.
When registering a function via plugin_function_register, the function is exported also to
the Scheme interface and it is possible to use it from the Scheme console. See Chapter 13
[Scheme], page 104 for implementation details.

10.2 Rules for writing plugins

The plugin interface must be properly initialized and cleaned up by functions plugin_init and
plugin_finish. A plugin is loaded via the function plugin_load and (possibly) unloaded by
plugin_unload.
Every valid VRR plugin must contain the function u32 plugin_start(void). Make sure the
prototype is exactly this. plugin_start is called immediately after the successful plugin loading
and its purpose is to perform initialization routines as well as plugin function registering. The

http://www.linux.org/docs/ldp/howto/Program-Library-HOWTO/

Chapter 10: Plugins 97

plugin flags are described in the return value. If you wish your plugin to be unloadable, make
sure you set the flag PLUGIN_UNLOADABLE.
Every exported plugin function must of prototype union plugin_arg func(union plugin_arg
*arg) or void func(union plugin_arg *arg). The exported plugin functions are registered
into the interface via the function plugin_function_register.
This is an example (taken from ‘plugin/hell.c’):

u32 plugin_start(void)

{

plugin_function_register("tsunami", NULL, PLUGIN_T_VOID,

2, PLUGIN_T_REAL, PLUGIN_T_REAL);

plugin_function_register("hilbert_curve", NULL, PLUGIN_T_VOID,

2, PLUGIN_T_OBJ_TLO, PLUGIN_T_INT);

plugin_function_register("random_pastes", NULL, PLUGIN_T_VOID,

2, PLUGIN_T_OBJ_TLO, PLUGIN_T_INT);

plugin_function_register("show_horizontal_points", NULL, PLUGIN_T_VOID,

1, PLUGIN_T_OBJ_TLO);

plugin_function_register("test_solve_y", NULL, PLUGIN_T_VOID,

2, PLUGIN_T_OBJ_TLO, PLUGIN_T_REAL);

plugin_function_register("plus", "adds two integer numbers", PLUGIN_T_INT,

2, PLUGIN_T_INT, PLUGIN_T_INT);

return 0;

}

Similarly, when unloading an (unloadable) plugin, the function plugin_stop is executed, if
present in the plugin.
In general, it is possible (as the plugin is a solid part of VRR after loading) to change every
single variable and execute every function VRR has for its internal purposes, but doing that is
discouraged. Try to write the plugins in the cleanest possible way.

10.3 Implemented plugins

Plugins, implemented for VRR, are stored in the ‘plugin’ directory. They have mostly exper-
imental and demonstration purpose, but we expect that soon in the future numberous plugins
will arise.
We implemented these plugins:
• ‘plugin/hell.c’: An experimental plugin used to test the VRR plugin mechanism. It

contains functions for various funny picture transformations (tsunami, random_pastes,
. . .).

• ‘plugin/heaven.c’: An experimental GUI plugin used to demonstrate the GUI plugin fea-
tures. The description can be found in Section 10.4.3 [An Example of a GUI Plugin],
page 98.

10.4 GUI Plugin Interface

VRR’s GUI enables the plugins to register new functions and add new items in menus and tool-
bars. The command set of the Command Structure can be simply extended by other commands
(see Section 7.3.3 [Command Editing Actions], page 63) and provides an additional interface for
command editing actions for plugins (see Section 7.3.4 [Plugin Menu Functions], page 63). More-
over, the plugins can register their own GO Factory states by adding the GO Factory commands
into the Command Structure (see Section 7.3.2 [Command Definitions], page 61).

10.4.1 Basic Features for Plugins

File: ‘gui/cmdmgr.h’
As an author of a GUI plugin, you can use any VRR functions you like. However, a basic
interface for registering plugin functions into the GUI are provided in addition to functions for

98 The VRR Programmer’s Manual

plugin loading and unloading. During plugin load, you register the plugin with a description
and obtain a unique plugin menu ID. Then you can add your functions into a specially created
command category conveniently, as described in Section 7.3.4 [Plugin Menu Functions], page 63.

Or, you can create your menu commands “manually” and then feed them into the command
structure to any place you like. The plugin_ctg category is the one reserved for plugin functions
and you can access it directly. Remember, however, that you should not change or remove any
commands you have not created yourself.

The plugin functions registered in the GUI do not appear in the function list of the Plugin
Manager; instead, you can find them in the View toolbar and View pop-up menu.

10.4.2 How to Avoid Plugin Problems

At present, the user can load a plugin several times, which could cause some problems. For
example, you store the plugin menu ID in a static variable and after another load of the plugin,
the value of the variable is changed. When unregistering any of the plugin instances, the same
ID is used and the old value is forgotten – you unregister one plugin instance several times and
the other ones remain registered.

When adding a command “manually” into the Command structure, another problem can occur:
the Command Structure fills the next and parent pointers in the added command so that it
is linked in the internal structures. After adding the same command several times, the pointer
structure is broken and the Command Structure gets confused and might get lost in an infinite
cycle.

Thus, you should prevent the user from causing problems by loading your plugin multiple times.
A simple example how to do that is:

int my_menu_id = -1;

int stopped;

u32 plugin_start(void)

{

if (my_menu_id != -1)

return 0;

my_menu_id = plugin_menu_register("My plugin");

// register some functions, ...

return MY_PLUGIN_FLAGS;

}

void plugin_stop(void)

{

if (stopped)

return;

plugin_menu_unregister(my_menu_id);

stopped = 1;

}

You should also try to avoid collisions of variable names with other plugins’ variables, for ex-
ample, by prefixing the names with the name of your plugin.

10.4.3 An Example of a GUI Plugin

An example of a GUI plugin can be found in the file ‘plugin/heaven.c’. This plugin uses
both the kernel and the GUI interface and demonstrates the most useful features. It is heavily
commented and quite self-descriptive.

Chapter 10: Plugins 99

It includes registering commands via the convenient plugin interface and manually created com-
mands as well; it also shows how to create GO Factory states and use them. It demonstrates
some additional GUI features, such as property recycling (see Section 7.6.4 [Property Recycler],
page 72) and context changes (see Section 7.3.1 [The Context], page 61). Moreover, it shows a
complex kernel transaction which creates graphic objects dependent on one another.

100 The VRR Programmer’s Manual

11 Export

VRR supports exporting images into the PostScript, PDF and SVG formats. Export mod-
ules are located in the ‘export’ directory. All modules share the common public header
‘export/export.h’ which contains export function prototypes.

11.1 PostScript export

PostScript is the worldwide printing and imaging standard. It is used by print service
providers, publishers, corporations, and government agencies around the globe. In
short, PostScript is a complex programming language designed especially for printing
graphics. See http://vrr.ucw.cz/doc/PLRM.pdf for complete reference. The structuring
information is maintained in the form of the DSC comments inside the PostScript code,
see http://vrr.ucw.cz/doc/DSC.pdf for complete definition. Without these additional
informations, the document structure is nearly unrecognizable. VRR PostScript output is fully
conforming to DSC conventions.

There are libraries which allow the programmer to output valid PostScript code. However, we
decided to write our exporter by hand, which gives us more control on what happens in the
code.

In the beginning of the output, the exporter stores the DSC header and defines its own set of
command shortcuts to minimize the output size. Then the font data are stored. PostScript
requires special font formats. The Type1 fonts are supported but the TrueTypes are not and
must be converted into a Type42 font, which is done by FONTLIB. See Chapter 9 [FONTLIB],
page 91. Every used font is dumped only once. The exporter is able to omit the font files
and write DSC commands instead, which should cause loading of the specified fonts by the
PostScript viewer and interpreter.

The export itself is quite straightforward. The exporter walks through the GO list, outputs the
graphical environment setup (stroke color, fill color, line caps, etc.) and then the appropriate
command with arguments. The document is exported as one PostScript file and every TLO
object is exported as a separate document page. Every object in the output is surrounded
by the gsave and grestore PostScript commands, so that the programmer can freely change
graphical output properties without bothering with restoring them. The same applies to every
page, which is surrouned by save and restore commands.

We should also mention that sometimes an object we are exporting is not supported by Post-
Script object set and we approximate it with Bézier curves, which is done by GEOMLIB (see
Chapter 5 [GEOMLIB], page 15).

The exporter source code is in the file ‘export/ps.c’.

11.1.1 Encapsulated PostScript

An encapsulated PostScript file is a PostScript language program describing the appearance of
a single page. Typically, the purpose of the EPS file is to be included, or “encapsulated”, in
another PostScript language page description. The EPS file can contain any combination of text,
graphics, and images, and it is the same as any other PostScript language page description with
only a few restrictions. See http://vrr.ucw.cz/doc/EPSF_Spec.pdf for complete reference.

The VRR PostScript exporter supports an EPS export variant which of course exports valid EPS
file containing only one page. Consult the exporter source code for details how the PS and EPS
outputs differs.

http://vrr.ucw.cz/doc/PLRM.pdf
http://vrr.ucw.cz/doc/DSC.pdf
http://vrr.ucw.cz/doc/EPSF_Spec.pdf

Chapter 11: Export 101

11.2 PDF export

The Portable Document Format is another graphical document format published by Adobe. PDF
is not a general-purpose programming language as the PostScript (see Section 11.1 [PostScript
export], page 100). Instead, it a binary data format intended for interactive viewing. To
improve performance for interactive viewing, PDF defines a more structured format than that
used by most PostScript language programs. PDF also includes objects, such as annotations
and hypertext links, that are not part of the page itself but are useful for interactive viewing
and document interchange. See http://vrr.ucw.cz/doc/PDFReference16.pdf for complete
reference.
The PDF file is organized into streams, where each stream contains some part of the document.
There are cross-references among these streams. The PDF export is a little bit more complicated
when compared to PostScript export (see Section 11.1 [PostScript export], page 100). The table
of contents is located at the end of the file and there is a lot of indirect references, which means
that the exporter has to keep track of the positions of all exported streams.
Not counting the complications caused by references, the PDF export is also straightforward.
After writing the PDF header, the fonts are exported, together with the corresponding font
headers. TrueTypes are fully supported, the Type1 fonts are required to be stored in the PFB
format and in a special way, which is done by FONTLIB, see Chapter 9 [FONTLIB], page 91.
Then the exporter walks through the GO list and exports the objects one by one by outputting
the corresponding commands and arguments, preceded by graphical environment (colors, line
widths, etc.) setup and surrounded by graphical stack save and restore commands. At the end,
the PDF content table is stored.
The source is in the file ‘export/pdf.c’, consult it for details.

11.3 SVG export

SVG (Scalable Vector Graphics) is a language for describing two-dimensional graphics and graph-
ical applications in XML. VRR supports SVG 1.1, which is a W3C Recommendation.
SVG makes it possible to do high-resolution printing, animation, drill down, rollover and pop
up text along with other special effects. It is an open standard.
More information about the SVG format is available at the Adobe’s website at
http://www.adobe.com/svg/, for specification, see http://www.w3.org/TR/SVG/.
SVG is based on the XML (eXtensible Markup Language). We use libxml to write valid XML
code. Following the SVG DTD, the exported file contains all recommended tags and attributes.
Each graphic object is exported into a corresponding SVG graphic object (line, text, Bézier curve
etc.) or into a group of cubic non-rational Bézier curves. This approximation is computed by
GEOMLIB. TEX texts are expanded into single characters and approximated to common SVG
text.
Except for graphic object specific parameters, we export all supported object attributes like fill
color, fill opacity, stroke line cap, stroke join, visibility, stroke color, stroke width, and opacity.
In case of any error while exporting the graphic object, the export fails. At the end, all data
are flushed into the file and the export finishes successfully.
In future releases, we would like to improve the TEX text importing, in the recent version it is
limited (we export only printable 7-bit characters).
For more details, see ‘export/svg.c’.

http://vrr.ucw.cz/doc/PDFReference16.pdf
http://www.adobe.com/svg/
http://www.w3.org/TR/SVG/

102 The VRR Programmer’s Manual

12 Import

VRR is able to import subsets of the SVG and IPE v5.0 image formats. The import mod-
ules are located in the ‘import’ directory. All modules share the common public header
‘import/import.h’, which contains import function prototypes.

12.1 DVI import

DeVice Independent (DVI) is the TEX output file format. Its format is in detail documented in
the book Donald E. Knuth: TEX: The Program. VRR has its own DVI file parser (located in
‘import/dvi.c’) which is used mainly for TEX text handling (see Chapter 6 [Kernel], page 41
how). However, the parser is designed to be general enough to be used alone, without Kernel.
The parser uses the the LibKPathSea library (see Section 2.6 [External programs], page 7) for
font file lookups during DVI parsing.
The DVI parser itself is not only a parser, it is also an interpreter of the DVI simple “machine
code”. Consult the DVI reference or parser source for details. The output of the DVI parser
consists of a list of TEX glyphs. See ‘import/import.h’ for the definition of struct tex_glyph
data structure.
A TEX glyph can be either a rule (which is a black-filled rectangle), in which case the placement
and dimensions are given, or a character code, in which case the code, font ID and placement
are given. After object scanning, the parser recomputes units into millimeters and changes the
TEX placement coordinates into the Cartesian coordinates.

12.2 IPE import

The current version (6.0 at the time being) of the IPE editor is available at
http://ipe.compgeom.org/. As in the time we were developing VRR there was
installed the outdated version 5.0, we decided to write a really simple and basic import module
to reuse the vast amount of IPE v5.0 pictures.
Writing the importer (located in ‘import/ipe5.c’) was the work of trial and error, as the IPE
native format is not documented. We mention that it is a 3-in-1 polyglot. When processed by
TEX it produces the TEX writings and when processed by a PostScript interpreter, the graphics
is printed. Moreover, some internal IPE information is saved in the comments.
The importer is a simple text file parser, see the source for details on IPE format. The following
features are not implemented:
• splines
• font sizes
• arrows
• stroke and fill color
• line width and pattern

The discovered IPE objects are inserted into the supplied TLO.

12.3 SVG import

SVG (Scalable Vector Graphics) is a language for describing two-dimensional graphics and graph-
ical applications in XML. VRR supports SVG 1.1, which is a W3C Recommendation.
SVG makes it possible to do high-resolution printing, animation, drill down, rollover and pop
up text along with other special effects. It is an open standard.
More information about the SVG format is available at the Adobe’s website at
http://www.adobe.com/svg/, for specification, see http://www.w3.org/TR/SVG/.

http://ipe.compgeom.org/
http://www.adobe.com/svg/
http://www.w3.org/TR/SVG/

Chapter 12: Import 103

SVG is XML based, so we use the libxml library to read tags and attributes from the imported
file. We do not support all SVG features, especially groups, cascading styles, triggers, filters,
some text transformations, patterns and because of our different internal arc representation, we
do not support SVG arcs.
According to the imported graphic object, we read some of its attributes, which are advanced in
VRR. In case of any error, the import finishes with an error status. If all needed (and eventually
some optional) attributes of the imported graphic object are read, the appropriate VRR graphic
object is created in the VRR kernel and these attributes are set as its properties.
We expect SVG import to support more features in future releases.

104 The VRR Programmer’s Manual

13 Scheme

VRR supports an integrated scripting language using the GUILE library. The glue code connect-
ing VRR with GUILE as well as the source code in scheme are located in the ‘scheme’ directory.

13.1 Scheme kernel data types

Files: ‘scheme/glt_kernel.c’, ‘scheme/glt_kernel.h’

For accessing VRR objects from Scheme, it is needed to create Scheme objects for VRR objects.
We call these Scheme objects proxies. Proxy data types are defined during kernel initialization,
in the function glt_kernel_init(). There are three types of proxies: o, anchor and hanger
proxies. From the user’s point of view there a is different division based on the object kinds –
in this division o proxies are in two categories: obj and go proxies, but their implementation is
the same. Proxies are implemented using the GUILE’s mechanism of smobs - small objects with
type information and one pointer. This pointer is used to store a pointer on the target structure.
So, having a proxy, it is simple to get the VRR structure (functions scm2o(), scm2anchor(),
scm2hanger()). We wanted not to have more different proxies for one kernel structure, so we
use a hash table to convert pointers to kernel structures to their proxies (functions o2scm(),
anchor2scm(), hanger2scm()). If anyone wants a proxy to a kernel structure, it is taken from
the hash table or created (and put to the hash table). A proxy increases the reference counter
of the appropriate kernel structure. If garbage collector finds a proxy as unusable, then the
reference is freed and the proxy is removed from the hash table.

13.2 Scheme GUI data types

Files: ‘scheme/glt_gui.c’, ‘scheme/glt_gui.h’

For accessing GUI objects (i.e. windows), there are also proxies, but these proxies are com-
pletely independent of kernel proxies. GUI proxies are initialized during GUI initialization, in
the function guilelink_gui_init(). These proxies are also implemented using smobs, but
the reverse mechanism is simpler. Each window has a slot in its structure for storing a proxy
which is initially empty. After a request for the proxy (function window2scm), a newly created
proxy is stored in this slot. If the garbage collector finds the proxy as unusable, then this slot
is reset to empty. GUI proxies do not increase reference counters of windows (because windows
do not have reference counters), so it is possible that window is freed sooner than its proxy. So,
the destroying method of each window calls window_proxy_clean() on the stored proxy and
this function clears the content (stored pointer) of that proxy so that the cleared proxy is not
considered valid (Scheme functions fail on that proxy).

13.3 Scheme bindings for VRR functions

Files: ‘scheme/gl_misc.c’,

There are are three ways how to add a new function into the VRR Scheme interface – write it
in Scheme, write it in C with special regard to Scheme (manual conversion of arguments from
Scheme shape, call the registration function on it) and automatically generate from a common
C function. A small number of functions are created in the second way – usually functions with
complicated argument patterns or with another complication. They are defined in files in the
‘scheme’ directory, particularly ‘scheme/gl_misc.c’. They usually have the gl_ name prefix
and arguments of types SCM. The vast majority of functions are generated automatically using
the snarf script (written in GNU AWK, located at ‘build/snarf’).

Chapter 13: Scheme 105

13.4 Scheme snarfing

Files: ‘build/snarf’, ‘scheme/glt_common.h’, ‘scheme/glt_kernel.h’, ‘scheme/glt_gui.h’,
‘scheme/scheme_def.h’, ‘kernel/guilelink.h’, ‘gui/guilelink.h’
The snarf script scans the selected source headers for function prototypes written in a special
manner, and for each such function it creates an encapsulation function (written to the generated
source file) which is responsible for conversion of arguments and return value and which can be
connected to Scheme. What does a specific header look like? snarf is looking for lines starting
with SCHEME, the rest of each such line is searched for tokens – a token is a word starting with
S, continuing with non-space symbols and terminated by a space symbol (which is not counted
as part of the token). The string starting with the first non-space symbol after the first token
and terminating with the first open parenthesis is considered to be the name of the function.
The first (output) token specifies the return value of the function, the remaining (input) tokens
specify arguments (in the given order).
Valid tokens are:

SINT integer in C, exact number in Scheme

SUNS unsigned in C, exact number in Scheme

SREAL real in C, real in Scheme

SBOOL unsigned in C, boolean in Scheme

SSTRINGC const char * in C, string in Scheme

SSYMBOLC const char * in C, symbol in Scheme

SSTRINGS string (special kernel type) in C, string in Scheme

SSYMBOLS string (special kernel type) in C, symbol in Scheme

SANCHOR pointer to struct anchor in C, anchor proxy in Scheme

SHANGER pointer to struct hanger in C, hanger proxy in Scheme

SO_type pointer to struct type, which is descendant of struct o in VRR object hierarchy,
in C, go or obj proxy in Scheme.

SW_type function accepts a pointer to a struct type, which is a descendant of struct window
in VRR GUI object hierarchy; in C, a window proxy in Scheme.

There is the SVOID token representing void return value, which is valid only as an output token.
The last token may be STRANS or SMETATRANS, which signalises that the given function
must be called in an appropriate transaction. All these tokens are preprocessor macros (defined
in ‘scheme/scheme_def.h’), so they are converted by the preprocessor to correct C source. for
example:

SCHEME SVOID group_relink_selected_go(SO_go_group source,

SO_go_group target, SO_go after); STRANS

is converted by the preprocessor to:
void group_relink_selected_go(struct go_group *source,

struct go_group *target, struct go *after);

and the generated encapsulation is:
static SCM sh_group_relink_selected_go (SCM ar0, SCM ar1, SCM ar2)

{

volatile SCM retval = SCM_UNSPECIFIED;

assert_SO (ar0, SCM_ARG1, "group-relink-selected-go", ID_go_group);

assert_SO (ar1, SCM_ARG2, "group-relink-selected-go", ID_go_group);

assert_SO (ar2, SCM_ARG3, "group-relink-selected-go", ID_go);

ASSERT_GO_TRANS_SCHEME ("group-relink-selected-go");

106 The VRR Programmer’s Manual

TRANS_BEGIN(err_buf)

group_relink_selected_go((struct go_group *) in_SO (ar0),

(struct go_group *) in_SO (ar1),

(struct go *) in_SO (ar2));

TRANS_FAILED

throw_transaction_failed (err_buf);

TRANS_END

return retval;

}

The header files ‘kernel/guilelink.h’ and ‘gui/guilelink.h’ are standard places to write
simple functions accessible only from Scheme.

13.5 Scheme modules

Scheme code is separated to several modules to prevent namespace clutter. Most of them are
not accessible by default (for example in the console). Module names look like (vrr name).
Most modules are stored in files, but there is one which is created completely in C code: (vrr
low). This module contains all snarfed functions from kernel.

‘misc.scm’
Module (vrr misc) – miscellaneous VRR-independent functions.

‘support.scm’
Module (vrr console) – internal functions and structures.

‘console.scm’
Module (vrr console) – internal functions for the console.

‘property.scm’
Module (vrr property) – property handling routines.

‘save.scm’
Module (vrr save) – save implementation.

‘load.scm’
Module (vrr load) – load implementation.

‘high.scm’
Module (vrr high) – high level interface, accessible to users.

‘gui.scm’ Module (vrr gui) – high level GUI interface, accessible to users, contains all func-
tions snarfed from GUI.

13.6 Scheme exceptions and transactions

In VRR there may be an arbitrary depth of scheme/C switches on stack. GUILE Scheme uses
exceptions for error signalization. Both exceptions and failed transactions contain some form of
long jump. It is necessary to ensure that a failed transaction does not jump over some scheme
sections on stack (and vice versa). It is accomplished by wrapping each C code executed from
Scheme code by an anonymous transaction; and each Scheme code executed from the C code
by the function scm_call_with_dynamic_root() which disallows any indirect returns from the
Scheme code. A convenient way to call Scheme code from C is using the function call_guile_
fn_from_c which does all the steps needed. Exceptions generated in Scheme code are translated
to trans-fails in C code, and vice versa. But this conversion is not ideal, because VRR trans-fails
contain just strings whereas GUILE exceptions contain arbitrary data; then an exception is early
converted to a string for trans-fail and the next exception in a row is just a trans-fail exception.

Chapter 14: Documentation 107

14 Documentation

The documentation of the VRR project is split into these three parts:
• The VRR User’s Manual – It contains a detailed user description how to control the program

to use all VRR’s features.
• The VRR Programmers’ Manual – It covers the principles behind the source code and allows

a programmer to get familiar with VRR sources easily. See Section 1.1 [About this manual],
page 1.

• The source code documentation – A detailed description of implemented functions, macros
and data structures which is directly written to the source code. This part of documentation
is extracted using the Doxygen tool into HTML to allow fast navigation through function
descriptions, structure index, etc.

14.1 Building manuals

The source code of The User’s Manual and The Programmer’s Manual in GNU Makeinfo for-
mat (see http://www.gnu.org/software/texinfo/texinfo.html for details) is located in the
subdirectory ‘doc/manual’ of the VRR’s project tree.
Both manuals can be compiled by executing the make command (see Section 2.3.3 [Makefiles],
page 5) in ‘doc/manual’ subdirectory or by make manual in the root directory. The script
generates printable books in DVI, PS and PDF format and also a cross-referenced HTML docu-
mentation.
Additional necessary tools beside the GNU Makeinfo Documentation Project to suc-
cessfully compile the books are TEX, pdfTEX and the bmeps utility, available at
http://bmeps.sourceforge.net/.
The results are generated in ‘doc/manual’ to files with the prefix ‘manual’ for The User’s Man-
ual and the ‘progman’ for The Programmer’s Manual. HTML documentations are located in
‘manual_html’ and ‘progman_html’ with ‘index.html’ as the main file.

14.2 Building source code documentation

Source files in the project follow a syntax that can be processed with the Doxygen tool to
generate an on-line documentation. Doxygen is able to automatically recognize all definitions if
C source and process their description from special comments, beginning with “/**” or “///”.
Details about the syntax can be found at http://www.doxygen.org/.
The source code documentation can be built with make doc command executed in the
VRR’s root directory. Resulting HTML documentation is generated to the subdirectory
‘doc/reference/html’.

http://www.gnu.org/software/texinfo/texinfo.html
http://bmeps.sourceforge.net/
http://www.doxygen.org/

108 The VRR Programmer’s Manual

15 Future plans

This chapter documents the most important changes we plan in the future releases. Some of
them are partially implemented, some of them are only designed. For the complete list of bugs,
errors and planned features look at VRR Bugzilla (see Section 2.2 [Bug tracking system], page 4).

15.1 VRRLIB

The VRRLIB is quite complete for our needs.

15.2 GEOMLIB

There are many possible ways, how to improve functionality of GEOMLIB. The main plans for
later versions of VRR are:

• Improve the effectiveness and geometrical stability of some computations for Bézier curves.
Some current algorithms may in some situations to fail find the correct solution. When we
try for example to find the intersection of a self-crossing cubic curve (directly or indirectly
with a split to a pair of curves), the implemented algorithm does not find anything because
of a zero resulting polynomial.

• Implement specialized geometrical methods for segments and other supported curves to
increase their performance. Now, almost every routine invokes an expansion to Bézier
curves.

• Implement NURBS as a new class. Rational Bézier curves are an equivalent to NURBS, but
it would be nice to allow creation of this popular curve type with its many editing features.

• Add a direct support for parabolic and hyperbolic arcs. There are already some unfinished
functions, like creation of general conics from 5 points. The solver of liner equation systems
could be used for many useful features.

• Finish the implementation of connected and unconnected sets in the plane with compound
paths as a border (path sets). Algorithm to compute planar arrangement of paths is already
under construction.

• Implement expansion of a path with a given line style (width, . . .) to outline with path set
as the result. At first, the algorithms should be computed the arrangement and then for
each face create set of cyclic paths in a given offset.

• Implement a support for dashed curves (or general repeated patters).

• Improve the interface for VCL and write optimized functions for expanding curves to visible
segments.

• And many more features . . .

15.3 Kernel

• First, we would like to implement the support of paths in the kernel. There are some
beginnings of the path support now, but almost everything needs to be done yet. For
example, we would like to do the following: path operations, such as: join, split, subdivide,
merge, union, . . . Heuristic functions which create a path from a given set of objects.

• The save/load mechanism is written in Scheme currently. That showed up to be exteremely
impractical, so we need to rewrite the code to C.

• We plan to extend the set of supported objects by various geometric projections (transla-
tion, rotation, homothety, . . .) and angular objects to improve the geometric contruction
capabilities of VRR.

Chapter 15: Future plans 109

15.4 GUI

The GUI feature plans depend on the needs of other VRR modules. Namely, we plan to do the
following:
• The path editing support. Now, the path manipulation is quite awkward.
• Redesign the GO Factory to be more powerful and elastic; its GO creating capabilities are

somewhat limited. We also plan to change the property value entering mechanism to be
more user friendly.

• Enable a better and intuitive manipulation with the geometric dependency structure so
that the user can keep track about the dependencies he has created.

15.5 VCL

• Speed up rendering of some curve types (circles, etc.).
• Better support for line styles.
• Draw edges with anti-aliasing support.
• Alpha blending.

15.6 FONTLIB

• Implement our own font cache instead of the one provided by FreeType.
• Get rid of FreeType dynamic loading, as documented in Section 9.3 [FreeType library usage],

page 92.
• Finish the font decomposition into GEOMLIB curves.

15.7 Plugins

• Implement the failure mechanism during plugin loading.
• Write more plugins.

15.8 Export and Import

In future versions, we would like to:
• SVG Import – support more SVG features like patterns, groups and cascading styles.
• SVG Import – SVG elliptic arc is defined by start point, end point, two radii and x-axis

rotation. GEOMLIB in recent state is not able to work with this type of arc and we expect
to extend GEOMLIB functions to be able to import this graphic objects.

• SVG Import and Export – improve the way we work with texts, correct the text positions.
• follow the future GEOMLIB functions and graphic object attributes, like extended line styles

(dashing, . . .)
• SVG Export – improve the TEX text importing which is limited in the recent version (we

export only printable 7-bit characters).

15.9 Scheme

• Simplify the snarfing process.
• Test input parameters for invalid values (for example infinite floating-point numbers).

15.10 Other

We would like to satisfy all incentive suggestions reported by users and remain in developing
VRR.

110 The VRR Programmer’s Manual

Appendix A License

A.1 GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with

Appendix A: License 111

modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.
Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you changed

the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:
a. Accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

112 The VRR Programmer’s Manual

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,
a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c. Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modi-
fying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

Appendix A: License 113

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

114 The VRR Programmer’s Manual

END OF TERMS AND CONDITIONS

Appendix A: Index 115

Index

A
absolute shift . 44
acknowledgement. 3
action_f . 62
add_new_command_after . 63
add_new_command_into . 63
affine transformation structure 18, 19
affine transformations . 18
Affinity class . 84
align . 44
alive objects . 76
altered_data . 52
anchors . 43
arc . 34
arcs . 43
arrow . 46
ATIME . 27
authors . 1
Autoconf . 8
AVL-Tree. 12
avoiding plugin problems . 98

B
Bézier curve . 43
Bézier curves . 27
Bézier curves expansion. 36
Bernstein form of polynomials 17
BTIME . 26
bug tracking . 4
building . 4, 6
building manuals . 107
building source code documentation 107

C
cache . 13
Cairo library . 8
Canvas class . 88
categories, of commands . 63
center pass algorithm in R*-Tree 22
change_context . 61
changed_data . 53
changes propagation . 76
changing the context . 61
Char class . 83
choose subtree in R*-Tree . 21
circle . 34
circular arc . 34
CK_ALTERED . 52
CK_CHANGED . 53
CK_TRANSFORMED . 52
class Affinity . 84
class Canvas . 88
class Char . 83
class definition . 23
class fpath . 38
class Grid . 83
class Group . 85
class hierarchy in GEOMLIB . 24

class Lazy-expanding-area . 85
class Offset . 87
class overview . 83
class Painter-cairo . 89
class Painter-plainx . 89
class Path . 84
class Property . 87
class Rect . 84
class reference of VCL . 83
class Segment . 84
class String . 84
class TeX-layout . 88
class Text-layout . 88
classes. 22
clipboard . 56
clipboard_copy . 56
clipboard_copy_selected_go 56
clipboard_cut. 56
clipboard_duplicate_go . 56
clipboard_paste . 56
color selection dialog . 74
command categories . 63
command definitions . 61
command execution . 62
command requests . 62
Command Structure . 61
commands . 61
common curves interface . 25
compilation . 4
composite interface . 77
Compound paths . 37
configure . 5
conic . 34, 44
conic section . 34
constructors in GEOMLIB . 23
contact . 1
container interface . 78
context . 59, 61
context match evaluation . 62
context_matches . 62
conventions in VCL . 77
conversion PFA to PFB . 94
conversion PFB to PFA . 94
conversions of fonts . 94
coordinates . 27
CT_CATEGORY . 62
CT_FACTORY_OP. 62
CT_FUNC . 62
CT_SEPARATOR . 62
curve hangers . 43
curves . 25, 27
curves interface . 25

D
dead objects . 76
decoration point . 45
default unit . 55
definition of a new class . 23
definitions of GO factory states 65
delete in R*-Tree . 21

116 The VRR Programmer’s Manual

deleting units . 55
dependencies . 49
destructors in GEOMLIB . 23
developers . 1
development history . 2
development tools . 4
documentation . 107
documentation conventions . 77
download . 4
DVI import . 102
dynamic rectangular queries in R*-Tree 22

E
editing commands dynamically 63
editors of property values . 71
elementary curves . 27
ellipse . 34
elliptic arc . 34
elliptic arcs . 43
Encapsulated PostScript export 100
enclosure interface . 78
EPS export . 100
error handling . 15
example of a GUI plugin . 98
exceptions . 106
exceptions and transactions . 106
expansion of Bézier curves . 36
export . 100
export future plans . 109
export to EPS . 100
export to PDF . 101
export to PostScript . 100
export to SVG . 101
external libraries . 7
external programs . 7

F
factorization of matrix . 17
factory_op_break . 68
factory_op_start . 68
factory_op_step . 68
factory_op_step_back . 68
features . 3
Fifi . 74
file dialogs . 58
filename suggestion . 58
floating-point arithmetic . 15
font conversions . 94
font formats . 92
font rendering . 94
FontConfig . 7
FONTLIB . 91
FONTLIB functionality . 94
FONTLIB future plans . 109
FONTLIB overview . 91
FONTLIB programmers usage 91
FONTLIB usage . 91
fonts . 92
fpath class . 38
FreeType library . 7
FreeType library usage . 92
function commands. 62

function real arguments . 15
future plans . 108
future plans for export . 109
future plans for FONTLIB . 109
future plans for GEOMLIB . 108
future plans for GUI . 109
future plans for import . 109
future plans for kernel . 108
future plans for plugins . 109
future plans for scheme . 109
future plans for VCL . 109
future plans for VRRLIB . 108

G
general usage of VCL . 75
geom_bernstein_solve . 17
geom_bernstein_to_power . 17
geom_bezier_alength . 31
GEOM_BEZIER_ALENGTH_VALID . 28
geom_bezier_atime_to_time . 31
geom_bezier_atimes_to_times 31
GEOM_BEZIER_BBOX_VALID . 28
geom_bezier_bounding_box . 32
geom_bezier_derivation_at_time 30
geom_bezier_direction_times 31
geom_bezier_distance_times 32
geom_bezier_intersections . 33
geom_bezier_nearest_to_point 32
GEOM_BEZIER_NONRATIONAL . 28
geom_bezier_point_at_time . 30
geom_bezier_subdivision . 30
geom_bezier_time_to_atime . 31
geom_bezier_times_to_atimes 31
geom_callback_item . 39
geom_elliptic_arc . 35
GEOM_ERR_* . 15
geom_fpath . 38
geom_path . 37
geom_point . 17, 28, 39
geom_point_w . 28
geom_polynomial_solve . 16
geom_power_to_bernstein . 17
geom_rtree . 19
GEOM_RTREE_MAX . 19
GEOM_RTREE_MIN . 19
geom_rtree_node . 19
geom_rtree_obj . 19
geom_segment . 34
GEOM_SOLVE_LEFT_ONLY . 16
GEOM_SOLVE_MULTIPLICITY . 16
GEOM_SOLVE_UNIT_INTERVAL . 16
geom_transform . 18
GEOM_TRANSFORM_IDENTITY . 18
geom_transform_merge . 18
GEOM_TRANSFORM_SIMILAR . 18
geom_transform2 . 19
geom_vector . 17
geometric dependencies . 49
GEOMLIB . 15
GEOMLIB class hierarchy . 24
GEOMLIB constructors . 23
GEOMLIB destructors . 23
GEOMLIB future plans . 108

Appendix A: Index 117

GEOMLIB header files . 16
GEOMLIB hierarchy of classes 24
GEOMLIB overview . 15
GEOMLIB test program. 16
GEOMLIB virtual methods . 24
geomtrical methods . 27
Global Settings . 60
GNU awk . 8
GNU make . 8
GO factory . 63, 65, 67
GO factory commands . 63
GO factory states . 65
go hooks . 52
go_arrow . 46
go_decorator_point . 45
go_elarc . 43
go_intersection_point . 44
go_parametric_point . 44
go_point . 43
go_segment . 43
go_tex_text . 44
go_text . 44
GOF_TSORT . 51
GOST_ARROW . 46
GOST_BEZIER_CUBIC . 43
GOST_BEZIER_QUADRATIC . 43
GOST_DECORATOR_POINT . 45
GOST_ELARC_3ECC . 43
GOST_ELARC_3SMALL . 43
GOST_ELARC_FOCI . 43
GOST_ELARC_XY1ECC . 43
GOST_ELARC_XYR . 43
GOST_INTERSECTION_POINT . 44
GOST_PARAMETRIC_POINT . 44
GOST_POINT . 43
GOST_SEGMENT . 43
GOT_ARROW . 46
GOT_BEZIER . 43
GOT_DECORATION_POINT . 45
GOT_ELARC . 43
GOT_INTERSECTION_POINT . 44
GOT_PARAMETRIC_POINT . 44
GOT_POINT . 43
GOT_SEGMENT . 43
graphic objects . 43
graphic user interface . 58
Grid class . 83
grid computations . 70
Group class . 85
groups . 25, 46
GTK+ library . 7
GtkTreeModel . 74
GUI . 58
GUI future plans . 109
GUI overview . 58
GUI plugin example . 98
GUI plugins . 63
GUI plugins . 97
gui_prop_recycle . 73
gui_prop_recycler_set . 73
guile . 6
Guile library . 7

H
hangers . 43
hash table . 12
heaven.c . 97
hell.c . 97
hierarchy of classes in GEOMLIB 24
hierarchy of objects . 41
history . 2
history of VRR . 2
homogeneous coordinates . 27
hook for visualisation . 52
hooks . 51, 72
how to use transactions . 48

I
implementation of object system 89
implemented interfaces . 74
implemented plugins . 97
import . 102
import from DVI . 102
import future plans . 109
import to IPE . 102
import to SVG . 102
insert in R*-Tree . 20
installation . 4
instances . 22
interface of composite . 77
interface of container . 78
interface of enclosure . 78
interface of mask . 79
interface of nodes . 79
interface of objects . 80
interface of painter . 80
interface of placement . 81
interface of shape . 81
interface of transformation . 82
interface overview . 77
interface reference of VCL . 77
interfaces . 75, 77
intersection point . 44
Introduction . 1
IPE import . 102

K
kernel . 41
kernel future plans . 108
kernel overview . 41
kind of objects . 42

L
Lazy-expanding-area class . 85
LibKPathSea library . 7
LibPaper library . 7
LibXML library . 7
licence . 3, 110
linked lists . 13
linking . 47

118 The VRR Programmer’s Manual

M
main features . 3

makefiles . 5

manuals building . 107

mask interface . 79

matrix factorization . 17

matrix routines . 17

menu separators . 63

menus . 61

modify_state_f . 62

modules . 106

mouse clicks . 43

mouse event processing . 73

multiplier . 55

N
naming conventions . 77

node interface . 79

non-rational Bézier curves . 27

numerical algorithms . 16

O
obj_universe . 41

object hierarchy . 41

object hooks . 52

object interface . 80

object kind . 42

object system implementation 89

object type . 42

object-oriented programming . 22

objects . 41

OF_TSORT_ACTIVE . 50

OF_TSORT_DIRTY . 50

OF_TSORT_PRESORT . 50

Offset class . 87

OFIK_DPR . 65

OFIK_NONE . 65

OFIK_PROP . 65, 67

OFIK_SEL . 65

OFIK_TF . 65

OFIK_TRANSFORM . 65

ofs_end . 66

ofs_start . 66

open file dialog. 58

OPEN_DLG_END . 59

OPEN DLG START normal . 59

OT_DOCUMENT . 42

OT_TEMP . 42

OT_TLO . 42

OT_UNIVERSE . 42

OT_ZOMBIE . 42

overflow treatment in R*-Tree 21

overview of GEOMLIB . 15

overview of GUI . 58

P
packed colors . 90
pages . 46
painter interface . 80
Painter-cairo class . 89
Painter-plainx class . 89
parametric point . 44
parametrization . 26
Path class . 84
paths . 46
PDF export . 101
pdfTeX . 8
Perl . 8
PFA fonts . 93
PFA to PFB conversion . 94
PFB fonts . 93
PFB to PFA conversion . 94
placement interface . 81
plans for future . 108
plugin features . 97
Plugin Manager . 60
plugin mechanism . 96
plugin menus . 63
plugin problems . 98
plugin_menu_command_register 63
plugin_menu_command_register_conv 63
plugin_menu_register . 63
plugin_menu_unregister . 63
plugins . 60, 63, 96
plugins future plans . 109
plugins implementation . 96
plugins in GUI . 97
plugins rules . 96
point . 39, 43
points . 17
polynomials in Bernstein form. 17
polynomials in power form . 16
position hangers . 43
PostScript export . 100
PostScript Type1 fonts . 92
PostScript Type42 fonts . 94
power form of polynomials . 16
PQ_ANGLE . 55
PQ_LENGTH . 55
PQ_NONE . 55
PQ_REFERENCE . 55
predefined GO factory states . 66
prerequisities . 7
problems with plugins . 98
programmers . 1
programming conventions . 77
programming language . 6
project background . 1
project documentation. 107
project structure . 4, 9
prop_item_init . 71
PROP_STORE_DEFINE . 72
PROP_STORE_DESTROY . 72
PROP_STORE_GET . 72
PROP_STORE_NEW . 72
PROP_STORE_O . 72
prop_store_set . 72
PROP_STORE_TLO . 72
prop_subtype2quantity . 55

Appendix A: Index 119

prop_sync . 71
prop_unit_edit_create . 71
prop_value_edit_create . 71
prop_virtual . 55
propagation. 76
properties . 43, 53, 67, 71
properties in VCL . 76
properties of rational Bézier curves 28
properties of universe . 60
Property class . 87
Property Editor . 59
property editor widgets 59, 60, 67, 70
property list . 43
property recycler . 72
property structure definitions 71
property types and subtypes . 54
property value states . 67
proxy . 104
ps_global . 73
ps_recycler . 73
PSC_BUTT . 54
PSC_PROJECTING . 54
PSC_ROUND . 54
PT_POINTER . 54
PT_REAL . 54
PT_STRING . 54
PT_UNS . 54
PTP_TEX_PROCESS . 54
PTP_TRANSFORM. 54
PTP_UNSPECIFIED . 54
PTR_ANGLE_2PI. 54
PTR_ANGLE_4PI. 54
PTR_ANGLE_PI . 54
PTR_COORDINATE . 54
PTR_NON_NEGATIVE . 54
PTR_REFERENCE. 54
PTR_UNSPECIFIED . 54
PTS_FILE_NAME. 54
PTS_LARGE_TEXT . 54
PTS_UNSPECIFIED . 54
PTU_ALIGNMENT_X . 54
PTU_ALIGNMENT_Y . 54
PTU_ARROW_ALIGN . 54
PTU_ARROW_BACK . 54
PTU_ARROW_FRONT . 54
PTU_BOOLEAN . 54
PTU_CAP_STYLE. 54
PTU_COLOR . 54
PTU_CONIC_TYPE_0P . 54
PTU_CONIC_TYPE_1P . 54
PTU_CONIC_TYPE_2P . 54
PTU_CONIC_TYPE_3P . 54
PTU_FONT . 54
PTU_UNSPECIFIED . 54
purpose of VCL . 75
PWT_BUG . 71
PWT_CHECKBOX . 71
PWT_COMBO . 71
PWT_ENTRY . 71
PWT_FUNC . 71
PWT_SPIN_REAL. 71
PWT_SPIN_UNS . 71

R
R*-Tree . 19
R*-Tree - Center pass algorithm 22
R*-Tree - Choose subtree algorithm 21
R*-Tree - Data deletion. 21
R*-Tree - Data updates . 21
R*-Tree - Dynamic rectangular queries. 22
R*-Tree - Insert algorithm . 20
R*-Tree - Overflow treatment algorithm 21
R*-Tree - Rectangular queries 21
R*-Tree - Reinsert algorithm . 21
R*-Tree - Split algorithm . 20
R*-Tree data insertion . 20
R-Tree . 19
RATIME . 27
rational Bézier curves . 27
rational Bézier curves properties. 28
real arguments of functions . 15
real numbers . 15
Rect class . 84
rectangular queries in R*-Tree 21
recycling of property values . 72
reference count . 42
reference point . 44
registering a GUI plugin . 63
reinsert algorithm in R*-Tree 21
relative shift . 44
remove_command . 63
rendering of fonts . 94
requests, of a command . 62
required libraries . 7
rulers . 74

S
save file dialog . 58
SAVE_DLG_END . 59
SAVE_DLG_START . 59
scheme . 6, 104
Scheme bindings for VRR functions 104
scheme data types . 104
scheme exceptions and transactions 106
Scheme functions. 104
scheme future plans . 109
scheme gui data types . 104
scheme kernel data types . 104
scheme modules . 106
scheme snarfing . 105
scripting language . 6
segment . 43
Segment class . 84
segments . 34
separators . 63
shape interface . 81
snap . 66, 70
snap indication . 74
snap_point . 70
snap_to_anchor . 70
snap_to_go . 70
snarfing . 105
source code . 4
source code documentation building 107
source files . 4
source tree . 4

120 The VRR Programmer’s Manual

Special curve types . 39
special objects . 74
split in R*-Tree . 20
state transitions . 67
step back . 69
string . 57
String class . 84
string_entry . 57
strings . 56
struct go . 41
struct o . 41
struct obj . 41
struct obj_doc . 41
struct obj_tlo . 41
structure of source files . 4
submenus . 63
subtype of graphic objects . 42
SUGGEST_FILENAME . 59
supported font formats . 92
SVG export . 101
SVG import . 102

T
T_GO . 42
T_OBJ . 42
table of virtual methods . 22
temp . 47
TeX-layout class . 88
TEX texts . 44
text editor . 60
Text Editor . 60
Text-layout class . 88
texts . 44
The Visualisation . 64
TIME . 26
tlo_clipboard. 56
tlo_universe . 48, 49
toolbars . 61
top-level groups . 46
topological sorting . 48, 49
TRANS_BEGIN . 48, 49
TRANS_BEGIN_ANONYMOUS . 49
TRANS_BEGIN_MAIN . 48, 49
TRANS_END . 48
TRANS ERR SIZE . 49
trans_fail . 48
TRANS_FAILED . 48
trans_redo . 49
trans_undo . 49
transaction hooks . 53
transactions . 48, 106
transactions, how to use . 48
transformation interface . 82
transformation structure . 18
transformations . 18, 73, 75
transformed_data . 52
transitions between GO factory states 67
TrueType fonts . 93
tsort_insert . 51
tsort_insert_flag . 51
tsort_insert_group . 51
tsort_insert_hanger . 51
tsort_insert_selected . 51

tsort_is_active . 51
tsort_start . 51
two-directional affine transformation structure 19
Type1 fonts . 92
Type1 PFA fonts . 93
Type1 PFB fonts. 93
Type42 fonts . 94

U
undo . 48, 49
undo history . 48
undo history items . 69
Undo History window . 60, 74
unit hooks . 53
unit lists . 72
Unit Manager . 60
units . 55, 60, 72
units, deleting . 55
universe . 41, 47
Universe Browser . 59, 74
unlinking . 47
update in R*-Tree . 21
usage of VCL . 75
user interface . 58
using topological sorting . 51

V
VCL. 75
VCL classes . 83
VCL future plans . 109
VCL interfaces . 77
VCL overview . 75
VCL properties . 76
VCL usage . 75
vcl-context . 89
vcl-growing-array . 89
vcl-rectangle. 89
vectors . 17
View . 59
virtual methods in GEOMLIB 24
virtual properties . 43, 55
virtual property list . 56
visualisation . 64
visualization hook . 52
VMT . 22
VRR background. 1
VRR documentataion . 107
VRR pages . 1
VRRLIB . 11
VRRLIB future plans . 108

W
weights . 43
WIN_O_MAGIC . 58
windows . 58
writing plugins . 96

Z
Zlib library . 7
zombie . 42, 47

	Introduction
	About this manual
	Developers' center
	Project background
	The original idea
	Development history
	The present situation
	Acknowledgement

	Development tools
	Source tree
	Bug tracking system
	Project building system
	Directory structure preview
	Configure script
	Makefiles

	Main programming language
	Scripting language
	External programs
	Libraries
	GTK+ library
	Guile library
	LibKPathSea library
	FontConfig
	Zlib library
	LibXML library
	LibPaper library
	FreeType library
	Cairo library

	Other tools
	GNU make
	Autoconf
	GNU awk
	Perl
	pdfTeX{}

	Project structure overview
	VRRLIB
	GEOMLIB
	Kernel
	GUI
	VCL
	FONTLIB
	Plugins
	Export
	Import
	Scheme

	VRRLIB
	Main project header
	Logging and debugging
	Memory allocation
	Sorter
	Data structures
	Hash table
	AVL-Tree
	Cache
	Linked lists
	Growing array

	Miscellanea

	GEOMLIB
	Overview
	Purpose
	Error handling
	Floating-point arithmetic
	Functions input and output
	Header files
	Self-testing code

	Numerical algorithms
	Polynomials in power form
	Polynomials in Bernstein form
	Matrix routines
	Points and vectors
	Affine transformations
	Transformation structure
	Two-directional transformation structure

	R*-Tree
	Structures
	Data insertion
	Data deletion
	Data updates
	Rectangular queries
	Dynamic rectangular queries
	Center pass algorithm

	Objective programming
	Introduction
	Definition of a new class
	Initialization and destruction
	Virtual methods
	Class hierarchy

	Common curves interface
	Items and groups
	Curves
	Parametrizations
	TIME
	BTIME
	ATIME
	RATIME

	Geometrical methods

	Elementary curves
	Rational B{e}zier curves
	Definitions
	Properties of rational B{e}zier curves
	Recursive subdivision
	Evaluation of points and derivation vectors
	Euclidean arc length
	Points with a given tangent
	Bounding box
	Curve points in a given distance to a point
	Curve point nearest to a given point
	Intersections
	Degree elevation

	Segments
	Elliptic arcs
	Definitions
	Normalized form
	Initialization
	B{e}zier expansion
	Affine transformation

	Compound paths
	Class path
	Class fpath

	Special curve types
	Point item
	Callback-expansion item

	Kernel
	Kernel overview
	Objects
	The object hierarchy
	Graphic objects
	Point
	Segment
	B{e}zier curve
	Elliptic arc
	Parametric point
	Intersection point
	Text and TeX{} text
	Decoration point
	Arrow

	Groups
	Paths
	Pages
	Linking and unlinking

	Transactions and topological sorting
	How to use transactions
	Undo histories
	Geometric dependencies and topological sorting
	Using topological sorting

	Hooks
	Object hooks
	GO hooks
	Transaction hooks
	Unit hooks

	Properties
	Property types and subtypes
	Units
	Virtual properties

	Clipboard
	Strings

	GUI
	GUI Overview
	Windows
	The View
	The Universe Browser
	The Property Editor
	The Text Editor
	The Global Settings
	The Undo History Window
	The Unit Manager
	The Plugin Manager

	The Command Structure
	The Context
	Command Definitions
	Command Editing Actions
	Plugin Menu Functions

	The Visualisation
	The GO Factory
	State definitions
	Snap result states
	Property value states

	Transitions between states
	Usage of Undo Items
	Snap

	Property Editor Widgets
	Property Structure Definitions
	Unit Lists
	Hook Handling and Transactions
	Property Recycler

	Transformation Tools and Mouse Event Processing
	Step-by-step Transformations
	The Experimental Fifi

	Special GTK Objects and Widgets Used
	The GtkTreeModel Interface for Internal Structures
	Rulers
	Color Selection Dialog

	VCL
	VCL Overview
	The purpose of VCL
	VCL general usage
	Transformations
	Interface sightseeing tour
	Propagation
	VCL Properties
	Alive and dead objects
	Naming, programming and documentation conventions

	Interface reference
	Interface overview
	Composite interface
	Container interface
	Enclosure interface
	Mask interface
	Node interface
	Object interface
	Painter interface
	Placement interface
	Shape interface
	Transformation interface

	Class reference
	Class overview
	Char class
	Grid class
	Path class
	Rect class
	Segment class
	String class
	Affinity class
	Group class
	Lazy-expanding-area class
	Offset class
	Property class
	TeX{}-layout
	Text-layout
	Canvas class
	Painter-cairo class
	Painter-plainx class

	VCL Miscellanea
	Object system implementation
	vcl-rectangle
	vcl-growing-array
	vcl-context
	Packed colors

	FONTLIB
	FONTLIB overview
	FONTLIB programmers usage
	FreeType library usage
	Supported font formats
	PostScript Type1 fonts
	Type1 PFA fonts
	Type1 PFB fonts

	TrueType fonts
	PostScript Type42 fonts

	Font rendering
	Font conversions
	PFA to PFB conversion
	PFB to PFA conversion
	TrueType to Type42 conversion

	Other FONTLIB functionality

	Plugins
	Plugin mechanism implementation
	Rules for writing plugins
	Implemented plugins
	GUI Plugin Interface
	Basic Features for Plugins
	How to Avoid Plugin Problems
	An Example of a GUI Plugin

	Export
	PostScript export
	Encapsulated PostScript

	PDF export
	SVG export

	Import
	DVI import
	IPE import
	SVG import

	Scheme
	Scheme kernel data types
	Scheme GUI data types
	Scheme bindings for VRR functions
	Scheme snarfing
	Scheme modules
	Scheme exceptions and transactions

	Documentation
	Building manuals
	Building source code documentation

	Future plans
	VRRLIB
	GEOMLIB
	Kernel
	GUI
	VCL
	FONTLIB
	Plugins
	Export and Import
	Scheme
	Other

	License
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

	Index

